Wastewater and Reclaimed Water Quality Characterization (Task 1.3)

LOTT Clean Water Alliance Reclaimed Water Infiltration Study

Technical Memorandum

February 7, 2017

Prepared by

FDS

606 Columbia St NW, Suite 200 Olympia, WA 98501

Prepared for

LOTT Clean Water Alliance 500 Adams St NE Olympia, WA 98501

Table of Contents

Acron	yms a	and Abbreviations	iv
1.0	Intro	oduction	1
1.1	В	ackground	1
1.2	T	ask Goal	1
1.3	S	ummary of Approach	1
1.4	0	rganization of Technical Memorandum	2
2.0	Red	laimed Water Regulations and Treatment Overview	3
2.1	V	ashington State Reclaimed Water Regulations	3
2.2	R	eclaimed Water Treatment Processes	4
2.3	T	ypical Treatment Performance	5
3.0	LOT	T Treatment Plants	9
3.1	G	eneral Overview	9
3.2	В	udd Inlet Treatment Plant and Reclaimed Water Plant	9
3.3	M	artin Way Reclaimed Water Plant	12
4.0	Was	stewater/Reclaimed Water Quality Monitoring Methods	14
4.1	Р	arameters Analyzed	14
4.2	S	ampling Dates	15
4.3	S	ampling Locations	16
4.4	S	ample Collection Procedures	17
4.5	С	hain of Custody Procedures	18
4.6	La	aboratory Data Validation Process	18
5.0	Was	stewater/Reclaimed Water Quality Monitoring Results	21
5.1	В	udd Inlet Reclaimed Water Plant	21
5	.1.1	Conditions at Times of Sampling	21
5	.1.2	Conventional Parameters	22
5	.1.3	Residual Chemicals	25
	.1.4	Other Parameters	
	.1.5	Comparison of Secondary Effluent and Reclaimed Water	
5.2		artin Way Reclaimed Water Plant	
	.2.1	Conditions at Times of Sampling	
_	.2.2	Conventional Parameters	
	.2.3	Residual Chemicals	
	.2.4	Other Parameters	
5	.2.5	Effect of Wetland Ponds on Reclaimed Water Quality	43

6.0	Dis	cussion	.47
6.1	S	ummary of Results	.47
6.2	С	comparison with Other Studies of Residual Chemicals	.51
7.0	Cor	nclusions	. 54
8.0	Ref	erences	.55
List o	of T	ables	
Table 2	2-1.	Treatment and Effluent Quality Requirements for Reclaimed Water	4
Table 2	2-2.	Summary of Reported Ranges of Reclaimed Water Quality after Treatment	6
Table 2	2-3.	Summary of Residual Chemical Removal Efficiencies of Various Treatment Processes	8
Table 4	4-1.	Analytical Parameters for Wastewater and Reclaimed Water Characterization	. 15
Table 4	4-2.	Sampling Dates	. 16
Table 5	5-1.	Budd Inlet Treatment Plant Summary of Flow and Operating Conditions	.21
Table 8	5-2.	Budd Inlet Treatment Plant and Reclaimed Water Plant Summary of Conventional Parameters	.23
Table 5	5-3.	Budd Inlet Reclaimed Water Plant Summary of Residual Chemical Detections	. 25
Table 5	5-4.	Budd Inlet Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in at least one sampling event)	.27
Table !	5-5.	Budd Inlet Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in all sampling events)	.30
Table 5	5-6.	Martin Way Reclaimed Water Plant Summary of Flow and Operating Conditions	.33
Table 5	5-7.	Martin Way Reclaimed Water Plant Summary of Conventional Parameters	. 35
Table 5	5-8.	Martin Way Reclaimed Water Plant Summary of Residual Chemical Detections	.37
Table 5	5-9.	Martin Way Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in at least one sampling event)	
Table 5	5-10	. Martin Way Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in all sampling events)	.42
Table 6	6-1.	Residual Chemicals Consistently Observed in LOTT Wastewater for which LOTT's Treatment Facilities Exhibit Efficient Removal to Non-Detect Levels	.48
Table 6	6-2.	Comparison of Concentrations and Removals of Residual Chemicals Detected in Reclaimed Water in all Events at Either BIRWP and MWRWP	.49
Table 6	6-3.	Comparison of Concentrations and Removals of Residual Chemicals Detected in Reclaimed Water in all Events at Either BIRWP and MWRWP with Other Studies	. 53

List of Figures

Figure 2-1.	Summary of Water Reclamation Treatment Processes	5
Figure 3-1.	LOTT Wastewater and Reclaimed Water Flow Schematic.	9
Figure 3-2.	Budd Inlet Treatment Plant and Reclaimed Water Plant Process Schematic	11
Figure 3-3.	Martin Way Reclaimed Water Plant Process Schematic.	13
Figure 5-1.	Residual Chemicals with Differing Concentrations in Secondary Effluent and Reclaimed Water (Events 2 and 4)	32
Figure 5-2.	Flow of Water from MWRWP to Hawks Prairie Infiltration Basins	44
Figure 5-3.	Comparison of Pre-Wetlands and Post-Wetlands Water Quality for Select Residual Chemicals (Events 1 and 4)	46

List of Appendices

Appendix A	Residual Chemical Analyte List
Appendix B	Tabular Summary of Wastewater/Reclaimed Water Monitoring Results
Appendix C	Data Validation Report
Appendix D	Laboratory Analytical Reports (separate file)

Acronyms and Abbreviations

AS Activated Sludge

BDOC Biodegradable Dissolved Organic Carbon

BIRWP Budd Inlet Reclaimed Water Plant

BITP Budd Inlet Treatment Plant
BNR Biological Nutrient Removal
BOD Biochemical Oxygen Demand
CAS Conventional Activated Sludge
DOC Dissolved Organic Carbon
DPB Disinfection Byproduct

EBNR Enhanced Biological Nutrient Removal

EPA United States Environmental Protection Agency

HAA Haloacetic Acid

HRT Hydraulic Retention Time
LOTT Clean Water Alliance

MBR Membrane Bioreactor

MCL Maximum Contaminant Level

MF Microfiltration

mgd Million Gallons per Day

mg/L Milligrams per Liter (or parts per million, ppm)

MPN Most Probable Number
MRL Minimum Reporting Limit

MS/MSD Matrix Spike / Matrix Spike Duplicate
MWRWP Martin Way Reclaimed Water Plant

ng/L Nanograms per Liter (or parts per trillion, ppt)

N/A Not Applicable

NTU Nephelometric Turbidity Units
PBDE Polybrominated Diphenyl Ether
PFC Perflouorinated Compound
RPD Relative Percent Difference

SRT Solids Retention Time
TM Technical Memorandum
TOC Total Organic Carbon
TSS Total Suspended Solids
TTHM Total Trihalomethane

μg/L Micrograms per Liter (or parts per billion, ppb)

1.0 Introduction

1.1 Background

The LOTT Clean Water Alliance (LOTT) provides services to treat and manage wastewater for the urban areas of Lacey, Olympia, and Tumwater in Thurston County, Washington (at the southern end of Puget Sound). Since 2006, LOTT has also produced reclaimed water, which is used for irrigation and other non-drinking purposes, or is sent to infiltration basins where it recharges groundwater. The long-range plan for meeting future wastewater needs has been centered on expanding reclaimed water production and groundwater recharge.

Recently questions about infiltration of reclaimed water have been raised, including concerns regarding the fate and possible health and ecological impacts of certain types of chemicals that may remain in reclaimed water after treatment. These chemicals, referred to herein as "residual chemicals", include pharmaceuticals, personal care products, and other organic chemicals typically found at very low concentrations in reclaimed water.

To address these questions, LOTT is engaged in a multi-year Reclaimed Water Infiltration Study (Study or RWIS). The purpose of the Study is to improve the understanding of which residual chemicals exist in LOTT's reclaimed water and in the local environment, how reclaimed water that is infiltrated into shallow groundwater interacts with soils and local groundwater, and what happens to these residual chemicals over time in the environment. The findings of the study will be used by LOTT and the wider community to make the most appropriate choices for reclaimed water management and protection of public health and the environment.

1.2 Task Goal

One of the Study tasks (Task 1.3) is to characterize the types of chemicals that are present in wastewater and the quality of produced reclaimed water. The goal of this task is to determine and quantify what organic and inorganic compounds are present in LOTT's wastewater, with a focus on determining what residual chemicals remain in the reclaimed water after treatment at LOTT's treatment plants. This information will be used to assess treatment system effectiveness, inform subsequent sampling efforts, compare reclaimed water quality with that of other waters examined in the study (e.g., groundwater and surface water), and ultimately it will be factored into the human health and ecological risk assessment.

1.3 Summary of Approach

Quarterly sampling was conducted between November 2014 and October 2015, at LOTT's two reclaimed water treatment facilities: the Budd Inlet Reclaimed Water Plant (BIRWP) and the Martin Way Reclaimed Water Plant (MWRWP). The characterization was focused on influent wastewater and reclaimed water, but also involved sampling of LOTT's secondary effluent, which is produced at the Budd Inlet Treatment Plant (BITP) and is discharged into Puget Sound. Similarly, reclaimed water entering and exiting the constructed wetlands at LOTT's Hawks Prairie Ponds and Recharge Basins site was also analyzed.

1.4 Organization of Technical Memorandum

This technical memorandum documents the methodology and findings of Task 1.3. The document is organized as follows:

- Section 2 offers context by providing a brief overview of the Washington State regulatory framework that governs the permitting and use of reclaimed water, and the range of treatment processes used to produce reclaimed water.
- Section 3 describes LOTT treatment facilities.
- Section 4 identifies the methodology used to conduct the wastewater and reclaimed water sampling effort.
- Section 5 provides the results of the sampling.
- Sections 6 and 7 provide discussion of the results and conclusions, respectively.

2.0 Reclaimed Water Regulations and Treatment Overview

2.1 Washington State Reclaimed Water Regulations

Implementation of reclaimed water programs in the State of Washington is currently regulated jointly by the Departments of Ecology (Ecology) and Health (DOH). The reclaimed water permitting process is influenced by the *Water Reclamation and Reuse Standards*, which were established jointly by Ecology and DOH in 1997, under Revised Code of Washington (RCW) 90.46 (Reclaimed Water). The standards are not rules, but are used as guidance for best management practices and development of reclaimed water permit conditions. State guidance regarding reuse is also presented in Ecology's *Criteria for Sewage Works Design*. Washington is currently in the process of developing formal reclaimed water regulations. If adopted, these would take the form of Washington Administrative Code (WAC) 173-219, generally referred to as the "Reclaimed Water Rule".

The Water Reclamation and Reuse Standards establish requirements for four classes of reclaimed water with respect to both treatment technique and effluent quality, as described in **Table 2-1**. The standards define which classes of reclaimed water can be used for various reuse applications and define the control measures that must be implemented to protect public health. Class A water, which has the most stringent treatment requirements, can be used for all allowed reuse applications. By contrast, Class D water may be used for only selected reuse applications where strict controls are in place to minimize human contact with the reclaimed water.

Additional treatment requirements must be met if the produced reclaimed water is to be used for certain purposes. For example, for use in groundwater recharge applications via surface percolation, additional steps must be taken to reduce nitrogen prior to the final use of the water.

LOTT currently produces Class A reclaimed water, including nitrogen removal, at its two treatment facilities.

Table 2-1. Treatment and Effluent Quality Requirements for Reclaimed Water

	Class A	Class B	Class C	Class D
Water Quality Parameter	Oxidized, coagulated, filtered, disinfected	Oxidized, disinfected	Oxidized, disinfected	Oxidized, disinfected
Total Coliform, No./100 ml				
7-day Median	2.2	2.2	23	N/A
Single Sample	23	23	240	240
Turbidity, NTU Monthly Average Single Value	2 5	N/A N/A	N/A N/A	N/A N/A
BOD, mg/L				
Monthly Average	30	30	30	30
TSS, mg/L				
Monthly Average	30	30	30	30
Dissolved Oxygen, mg/L Daily Minimum	>0	>0	>0	>0

BOD = Biochemical Oxygen Demand; TSS = Total Suspended Solids; NTU = Nephelometric Turbidity Units; N/A = Not Applicable

Source: Washington State Water Reclamation and Reuse Standards (September 1997), Definitions and Section 1 – Table 2 (pg 36).

2.2 Reclaimed Water Treatment Processes

There are many combinations of processes used in wastewater treatment and reclamation to produce the qualities of reclaimed water described in Section 2 that are acceptable (per established regulatory standards) for the various uses or disposition of the resultant product water. A summary of those various combinations is provided in another technical memorandum prepared for the Study, referred to as the "State of the Science" (HDR 2013). **Figure 2-1** provides a summary of the most commonly employed processes.

Key treatment terms used in the wastewater and reclaimed water industry are:

- Preliminary Treatment. This is the screening of large solid material and removal of grit.
- Primary Treatment. Removal of material that readily settles or floats.
- Secondary Treatment. Removal of suspended solids and dissolved organic matter, and the destruction of pathogens.
- Advanced Treatment. This is a broad term referring to a range of processes, as
 depicted on Figure 2-1, that target removal of nutrients and organic compounds,
 reduction of total dissolved solids (TDS), or provision of additional barriers to pathogens.
 Examples of advanced treatment include membrane filtration and advanced oxidation
 (e.g., various combinations of ultraviolet light, ozone, and hydrogen peroxide).

Figure 2-1. Summary of Water Reclamation Treatment Processes

Source: NRC 2012 (Figure 4-1).

2.3 Typical Treatment Performance

The treatment processes summarized above have ranges of effectiveness regarding the removal of various contaminants. **Table 2-2** provides a summary of typical water quality after various levels of treatment.

Table 2-2. Summary of Reported Ranges of Reclaimed Water Quality after Treatment

		Range of Effluent Quality After Indicated Treatme							
Constituent	Units	Untreated	Conventional Activated Sludge (CAS)	CAS with	CAS with Biological Nutrient Removal (BNR)	CAS with BNR and Filtration	Membrane Bioreactor (MBR) ⁽¹⁾		
Total suspended solids (TSS)	mg/L	120-400	5-25	2-8	5-20	1-4	<2		
Total organic carbon (TOC)	mg-C/L	80-260	10-40	8-30	8-20	1-5	0.5-5		
Total nitrogen	mg-N/L	20-70	15-35	15-35	3-8	2-5	<10 ^a		
Total phosphorus	mg-P/L	4-12	4-10	4-8	1-2	≤2	<0.3 ^b -5		
Turbidity	NTU	N/A	2-15	0.5-4	2-8	0.3-2	≤1		
Volatile organic compounds (VOCs)	μg/L	<100->400	10-40	10-40	10-20	10-20	10-20		
Trace constituents	μg/L	10-50	4-40	5-30	5-30	5-30	0.5-20		
Total coliforms	No./100 mL	10 ⁶ -10 ⁹	10 ⁴ -10 ⁵	10 ³ -10 ⁵	10 ⁴ -10 ⁵	10 ⁴ -10 ⁵	<100		
Protozoan cysts and oocysts	No./100 mL	10-10 ⁴	10-10 ²	0-10	0-10	0-1	0-1		
Viruses	PFU/100 mL	10-10 ⁴	10-10 ³	10-10 ³	10 ¹ -10 ³	10-10 ³	1-10 ³		

Source: NRC 2012 (Table 3-2).

NOTE: None of the treatments in the table include disinfection.

At LOTT facilities, the BIRWP employs CAS with BNR and Filtration, whereas the MWRWP employs MBR. N/A = Not Applicable

Several studies have examined the efficacy of various reclaimed water treatment processes in removing residual chemicals (Snyder 2007, Stephenson 2007, Miege 2008). No process is capable of completely removing all studied residual chemicals from treated wastewater. This is illustrated in **Table 2-3**, which provides a summary of removal efficiencies of various treatment processes for select residual chemicals. Note that the efficiencies presented in this table are for individual treatment processes; they do not represent efficiencies of combined unit processes.

Most biological treatment processes can effectively reduce the majority of residual chemicals to low concentrations. A frequently used industry goal or benchmark is the removal of residual chemicals by a minimum of 80%. Studies have shown that the operating conditions of typical biological wastewater treatment facilities play an important factor in achieving these removal efficiencies for residual chemicals. It has been observed that generally an increase in solids retention time (SRT), or the time in which activated sludge solids (i.e., the materials containing the microorganisms responsible for the biodegradation processes in wastewater treatment) remain in the treatment process, correlates with an increase in removal efficiencies (Stephenson 2007). This is due to longer contact times between the microorganism and the chemicals which they degrade through metabolic and co-metabolic processes.

The concentrations of many residual chemicals can be reduced by 80% or more with treatment SRTs of 5-15 days, with some requiring an SRT greater than 30 days to achieve 80% removal.

⁽¹⁾ Reflects combination of activated sludge with microfiltration processes.

^aWith anoxic zone.

^bWith coagulant.

Longer SRTs are typically associated with treatment facilities that are designed to achieve biological nutrient removal (BNR), which is the use of the biological treatment process to remove nitrogen or phosphorus (Lubliner 2010).

Table 2-3. Summary of Residual Chemical Removal Efficiencies of Various Treatment Processes

Treatment					P	ercent Re	emoval				
	D/a\n	Antibiotical	Pharmaceuticals					Horr	nones	F	NIDMA
	B(a)p	Antibiotics ¹	DZP	CBZ	DCF	IBP	PCT	Steroid ²	Anabolic ³	Fragrance	NDMA
Secondary (conventional activated sludge)	nd	10–50	nd	_	10–50	>90	nd	>90	nd	50–90	_
Soil aquifer treatment	nd	nd	nd	25–50	>90	>90	>90	>90	nd	>90	>90
Aquifer storage	nd	50–90	10–50	_	50–90	50–90	nd	>90	nd	_	_
Microfiltration	nd	<20	<20	<20	<20	<20	<20	<20	nd	<20	nd
Ultrafiltration/ powdered activated carbon (PAC)	nd	>90	>90	>90	>90	>90	nd	>90	nd	>90	>90
Nanofiltration	>80	50–80	50–80	50-80	50–80	50-80	50-80	50-80	50–80	50–80	nd
Reverse osmosis	>80	>95	>95	>95	>95	>95	>95	>95	>95	>95	25–50
PAC	>80	20->80	50-80	50-80	20–50	<20	50-80	50-80	50–80	50–80	nd
Granular activated carbon	nd	>90	>90	>90	>90	>90	nd	>90	nd	>90	>90
Ozonation	>80	>95	50–80	50-80	>95	50-80	>95	>95	>80	50–90	50–90
Advanced oxidation	nd	50–80	50–80	>80	>80	>80	>80	>80	>80	50–80	>90
High-level ultraviolet	nd	20->80	<20	20–50	>80	20–50	>80	>80	20–50	nd	>90
Chlorination	>80	>80	20–50	-<20	>80	<20	>80	>80	<20	20->80	_
Chloramination	50–80	<20	<20	<20	50–80	<20	>80	>80	<20	<20	nd

(Source: USEPA 2010)

B(a)p = benz(a)pyrene; CBZ = carbamazepine, DBP = disinfection by-product; DCF = diclofenac; DZP = diazepam; IBP = ibuprofen; NDMA=N-nitrosodimethylamine; nd = no data; PAC = powdered activated carbon; PCT = paracetamol.

For LOTT facilities, the BIRWP employs Secondary, Ultraviolet, and Chlorination treatment processes; whereas the MWRWP employs Secondary, Microfiltration, and Chlorination treatment processes.

¹ erythromycin, sulfamethoxazole, triclosan, trimethoprim

² ethynylestradiol; estrone, estradiol and estriol

³ progesterone, testosterone

3.0 LOTT Treatment Plants

3.1 General Overview

LOTT provides wastewater treatment and reclaimed water production services for the cities and urban growth areas of Lacey, Olympia, and Tumwater. The current service area is approximately 52,000 acres in size, with a residential population of roughly 172,000 and an employment population of 117,000 (LOTT 2015). The majority of sewer connections are residential, with commercial and institutional connections including colleges, hospitals, medical facilities, and nursing homes. There are very few industrial connections, with 12 customers currently permitted through LOTT's industrial pretreatment program.

LOTT operates two wastewater treatment facilities. The overall flow of wastewater and reclaimed water, including the connectivity between the two facilities, is depicted on **Figure 3-1**.

Figure 3-1. LOTT Wastewater and Reclaimed Water Flow Schematic.

3.2 Budd Inlet Treatment Plant and Reclaimed Water Plant

The Budd Inlet Treatment Plant (BITP), LOTT's largest wastewater treatment facility, is located in downtown Olympia. The treatment process at the BITP is summarized in **Figure 3-2**, and consists of primary sedimentation, secondary treatment via an activated sludge biological process, and ultraviolet disinfection. The secondary process includes biological nutrient removal of nitrogen, which occurs generally from April to October, to prevent nitrogen from supporting excessive algae growth after the treated water is discharged into marine waters in

Budd Inlet. Nitrogen removal is accomplished by internal recycling of wastewater where nitrification and denitrification occurs in aerated and anaerobic zones.

In 2015, the BITP treated an average influent wastewater flow of 11.7 million gallons per day (mgd), and discharged an average flow of 10.2 mgd of final effluent (treated to secondary standards) to Budd Inlet.

A portion of the final effluent from the BITP is routed through additional treatment to meet Class A reclaimed water quality standards. The additional treatment processes are referred to as the Budd Inlet Reclaimed Water Plant (BIRWP). This treatment includes chemical addition and filtration through single-stage, continuous backwashing, upflow sand filters, and additional disinfection with chlorine. The reclaimed water is used for a variety of uses such as landscape irrigation, toilet flushing, and outdoor water features at multiple locations in the downtown Olympia area, as well as for irrigation of the Tumwater Valley Municipal Golf Course. In 2015, the BIRWP produced an average of 0.5 mgd of reclaimed water. The facility is designed to produce up to 1.5 mgd of reclaimed water.

The BITP and BIRWP operate under National Pollutant Discharge Elimination System (NPDES) and Reclaimed Water permit number WA0037061.

Figure 3-2. Budd Inlet Treatment Plant and Reclaimed Water Plant Process Schematic

(1) Source: Lubliner 2010.

3.3 Martin Way Reclaimed Water Plant

The Martin Way Reclaimed Water Plant (MWRWP) is a satellite reclaimed water facility that has produced reclaimed water since 2006. In its current configuration, it can generate up to 2.0 mgd of Class A reclaimed water, but is currently limited in capacity by the rate of influent raw wastewater flow, which averaged 1.3 mgd in 2015, with a maximum daily influent flow of 1.8 mgd.

Treatment is accomplished using membrane bioreactor (MBR) technology that is comprised of a two-stage biological nutrient removal step, followed by filtration and then chlorine disinfection. Solids removed during wastewater treatment at the MWRWP are sent back into the sewer force main where the solids are then conveyed to the BITP. The process flow diagram is shown in **Figure 3-3**.

The majority of Class A reclaimed water produced at the MWRWP is used for groundwater recharge purposes at two locations: 1) LOTT's Hawks Prairie Ponds and Recharge Basins; and, 2) the Woodland Creek Groundwater Recharge Facility owned by the Cities of Lacey and Olympia. At LOTT's Hawks Prairie site, reclaimed water is conveyed through a series of five constructed wetland ponds before flowing to groundwater recharge basins.

In 2015, the MWRWP produced an average reclaimed water flow of 1.13 mgd.

The MWRWP and Hawks Prairie Reclaimed Water Recharge Facility are permitted by Ecology and DOH under Reclaimed Water Permit ST 6206.

Figure 3-3. Martin Way Reclaimed Water Plant Process Schematic.

(1) Source: Lubliner 2010.

4.0 Wastewater/Reclaimed Water Quality Monitoring Methods

The wastewater and reclaimed water characterization effort was conducted according to a work plan (HDR 2015) that was reviewed and discussed with multiple parties engaged in the Study, including LOTT's Science Task Force (comprised of staff from LOTT and LOTT's partner jurisdictions, as well as representatives from other local and State entities including Ecology, DOH, and the Squaxin Island Tribe) and an independent peer review panel facilitated by the National Water Research Institute. Key elements of the monitoring approach are described in detail below.

4.1 Parameters Analyzed

Table 4-1 summarizes the parameters analyzed to characterize wastewater and reclaimed water quality, along with their associated laboratory analytical methods. The full list of residual chemicals is provided in **Appendix A**, along with descriptions of the types of chemicals they are. The complete list of analytes is provided in **Appendix B**, which is a tabular summary of all results. Field parameters were also collected including pH, electrical conductance, dissolved oxygen, oxidation reduction potential (ORP) and temperature. Free and total chlorine was also measured in the field on reclaimed water only (not wastewater).

Table 4-1. Analytical Parameters for Wastewater and Reclaimed Water Characterization

Parameter ¹	Method	Parameter ¹	Method
Residual Chemicals ²	LC/MS/MS	Dissolved total phosphorus. Dissolved orthophosphate	EPA 365.1/SM4500- P-E
Trihalomethanes	524.2	Total phosphorous, orthophosphate	EPA 365.1&365.2, SM4500P-E
HAA5 ³	SM6251B	Total organic carbon	SM 5310C
Cryptosporidium ³	EPA 1623	Biodegradable organic carbon	Allgeier 1996
SVOC ³	EPA 525.2	Total coliform	SM 9223
VOC ³	EPA 524.2	Fecal coliform	SM 9223
PFOS/PFOA+ other PFCs ³	LC-MS-MS	Coliphage	Adams, 1959
PBDEs plus permethrins ³	GC-QQQ	Chemical oxygen demand	EPA 410.4
EDB/DBCP ³	EPA 551.1	Biochemical oxygen demand	SM 5210B
Pesticides ³	EPA 505	Metals (Ag, Al, As, B, Be, Ca, Cd, Cr, Cu, Fe, Hg, Pb, Mg, Mn, Na, Pb, Ni, Se, Sb, Si, Tl, Zn) ⁴	EPA 200 series
Herbicides ³	EPA 515.4	Total Sulfide	SM4500SD/376.2
Low Detection Limit Hormones ³	EPA 539 Modified	Chloride, Sulfate, Bromide	EPA 300.0
NDMA ³	EPA 521	Chloramines	SM 4500CL-G
1,4-Dioxane ³	EPA 522	Fluoride	SM 4500F-C
Nitrate, nitrite	EPA 300. 351.1, 351.2	Free and total chlorine	SM 4500CL-G
Ammonia, TKN	EPA 350.1, 351.2	Total dissolved solids	SM 2540C

Notes:

- 1. This is the complete list of parameters included in the sampling protocol. Not all parameters were sampled for at each sample location, or during each quarterly sampling event, due to budgetary constraints.
- 2. Residual chemical list provided in Appendix A. Two residual chemicals (metformin and thiabendazole) were not analyzed for within the BITP Secondary Effluent (see note 3).
- 3. These parameters were not run on the BITP Secondary Effluent (the water that is discharged directly into Budd Inlet), due to budgetary constraints.
- 4. Total metals (not field filtered) and dissolved metals (field filtered) were analyzed for raw wastewater influent samples. Reclaimed water and secondary effluent water samples were analyzed only for dissolved metals (field filtered). Total metals were included only for raw wastewater due to the presence of solids and particulate matter in that matrix.

4.2 Sampling Dates

Four quarterly sampling events were conducted, in order to observe potential seasonal differences in water quality. The associated sampling dates are summarized in **Table 4-2**.

Table 4-2. Sampling Dates

Sampling Event	BITP/BIRWP	BITP Secondary	MWRWP		
1	November 13, 2014	November 13, 2014	November 12, 2014		
2	February 18, 2015	February 18, 2015	February 17, 2015		
3	May 20, 2015	N/A	May 20, 2015		
4	August 19, 2015	August 19, 2015	October 7, 2015		

The fourth sampling event for the MWRWP was originally scheduled to occur in August of 2015, but was delayed as the amount of water sent to the Hawks Prairie Ponds and Recharge Basins from the MWRWP was reduced in the summer of 2015, with the majority of flow going instead to the Woodland Creek Groundwater Recharge Facility. This, combined with the hot, dry weather conditions of summer 2015, resulted in decreased water levels in the Hawks Prairie wetland ponds and little water infiltrated in the Hawks Prairie Recharge Basins. In order to sample preand post-wetland water quality, as well as Class A reclaimed water quality, the final sampling event was postponed until such time that the wetland levels returned to higher levels and reclaimed water was flowing through them and into the recharge basins.

4.3 Sampling Locations

Samples were collected from multiple locations at the BITP/BIRWP and MWRWP facilities, as described below.

BITP/BIRWP Sample Collection Locations

- 1. Wastewater Influent: Raw wastewater coming into the BITP, at the Autosampler port normally used by LOTT for influent water quality monitoring.
- 2. Secondary Effluent: Treated secondary effluent discharged to Budd Inlet, at the Autosampler port normally used by LOTT for secondary effluent water quality monitoring.
- 3. Reclaimed Water: Class A reclaimed water produced at the BIRWP, prior to entering the downtown Olympia reclaimed water distribution system, at the Autosampler port normally used by LOTT for Class A reclaimed water quality monitoring.

MWRWP Sample Collection Locations

- 1. Wastewater Influent: Screened wastewater coming into the MWRWP from the Martin Way Pump Station, prior to the beginning of the treatment processes, at the Autosampler port normally used by LOTT for influent water quality monitoring.
- 2. Reclaimed Water: Class A reclaimed water produced at the MWRWP treatment plant, prior to leaving the plant site, at the Autosampler port normally used by LOTT for Class A reclaimed water quality monitoring.
- 3. Reclaimed Water Pre-Wetlands: Reclaimed water at the inflow point to the constructed wetlands at LOTT's Hawks Prairie site (i.e, at the end of the conveyance line that extends from the MWRWP to the Hawks Prairie site).

4. Reclaimed Water Post-Wetlands (Pre-Infiltration Basins): Reclaimed water that has been conveyed through the constructed wetlands, sampled at the inflow point to the infiltration basins at LOTT's Hawks Prairie site (i.e., water flowing out of the HDPE distribution header pipe lining an active infiltration basin).

The focus of this effort is on characterizing the raw wastewater influent and Class A reclaimed water produced at each facility. As such, samples were taken at these locations during each quarterly sampling event. Samples were taken at the other locations only during two sampling events, due to budget constraints.

For each sampling event, the "percent removal" of certain parameters is calculated, which reflects the difference in concentrations between raw wastewater and reclaimed water. This should be understood to be an approximation of the removal efficiency, as the grab samples at various stages of treatment were all obtained typically within the space of one hour and were not timed to reflect sampling of the same aliquot of water as it traveled through the treatment process (e.g., the reclaimed water sampled on a given day reflects the effects of treatment on raw wastewater that would have entered the treatment facility hours before, and is not directly correlated to the raw wastewater sample taken for the purpose of this study). However, this sampling protocol is typical of these types of studies and is considered adequate to provide a general characterization of water quality at various stages of treatment on a given day.

4.4 Sample Collection Procedures

Grab water samples were collected from the locations identified above. Sampling was conducted by personnel using laboratory grade gloves, with samples being placed directly into new laboratory bottles. Sample bottles were labeled with a unique sample identification number, sample date and time, and requested analysis.

The Autosamplers associated with the Raw Wastewater, Reclaimed Water, and Secondary Effluent samples were programed to purge the lines of stagnant water prior to discharging the appropriate sample volume. The sample port associated with the Pre-Wetlands sample was allowed to run for several minutes to clear the lines of stagnant water prior to sample collection. The Post-Wetlands samples were collected from water being directly discharged from the distribution header pipe associated with the infiltration basin active at the time of sampling.

Samples were collected in sequential order "up" the flow stream. For example, at the MWRWP, sampling began with the Post-Wetland sample location and concluded with the Raw Wastewater Influent sample location, in order to avoid contamination of cleaner water. All samples from a given site were collected on the same day.

Sample bottles were filled with water directly from the Autosampler port, sample port, or distribution header pipe, preserved with laboratory-supplied chemical preservative, if required, and placed in an ice-filled cooler. Dissolved metals and dissolved total phosphorus samples were collected by filling an unpreserved laboratory-supplied container with water and filtering the contents through a disposable 0.45 micron filter into the appropriate sample containers using a peristaltic pump. New filters and tubing were used for each sample.

Field parameters, including pH, temperature, dissolved oxygen, conductivity, and oxygen reduction potential, were collected immediately after sampling by filling a cup directly from the sample location and submersing the probe of a YSI Pro multi-meter in the cup. After allowing the readings to stabilize, field parameters were recorded on individual field sheets.

One field duplicate was collected during the first quarterly monitoring event by filling two identical sets of sample containers with water from the same sample location for each of the planned analyses. Field duplicates were given unique sample numbers and sample times. Additional volume was collected with one sample per quarter for laboratory analysis of a Matrix Spike/Matrix Spike Duplicate (MS/MSD).

4.5 Chain of Custody Procedures

Samples were tracked using proper chain-of-custody procedures. One chain-of-custody was completed for each sample. Completed chains-of-custody accompanied the samples from collection through shipping, sample receipt at the laboratory, and analysis.

Samples were shipped to Eurofins Eaton Analytical (EEA) and Centric Analytical Labs in individual coolers for analysis. Prior to shipment, sample bottles were wrapped in bubble wrap and placed inside coolers for shipment. All sample bottles for a discrete sample were shipped within the same cooler. Two large garbage bags were placed within each cooler prior to packing samples for shipment. The sample bottles were placed within an inner garbage bag, the bag was sealed, and loose ice was placed in the outer bag to cool the samples to 4°Celcius (C). The outer bag was sealed to prevent leaking during shipment. The chain of custody was placed in a zip-top plastic bag and taped to the interior lid of the cooler. The cooler was taped shut and transported to FedEx for overnight shipment to EEA. Coliform samples were sent to Centric Analytical Labs by courier.

4.6 Laboratory Data Validation Process

Upon completion of the laboratory analysis, the laboratory data packages were downloaded and reviewed for completeness at the end of each quarterly event. At the conclusion of all sampling events, a laboratory data validation review was completed to confirm accuracy and completeness for these items: sample identification, chain-of-custody and sample receiving, preservation methods, hold and extraction times, laboratory detection limits, surrogate recovery, blanks, spikes, duplicates, control samples, matrix spikes, and matrix spike duplicates.

A tabular summary of all results, including qualifiers, is presented in **Appendix B**. The data validation report documenting the data review process is included in **Appendix C**. Complete laboratory reports are included in **Appendix D** (provided as separate files).

A summary of the laboratory quality control/quality assurance and data validation/verification results are as follows:

1) **Hold Times.** Many of the samples analyzed for residual chemicals were determined to have exceeded hold times. A hold time study was conducted in 2016 to determine the effects of long hold times on the pharmaceuticals and personal care products (PPCPs)

and perflourinated compounds (PFCs). A summary of that hold time study and its results is provided in **Appendix C**. In brief, the study found that 90 of the 98 compounds evaluated appear to remain stable throughout an 84 day period (i.e., beyond the longest hold time experienced in this study). Eight compounds appear to show evidence of degradation or analytical variability, as follows:

- Two compounds (metazachlor and metolachlor) began to degrade after approximately two weeks. Because all metazachlor and metolachlor samples were analyzed past a two week hold time, all of the results for these two parameters are assigned an "R" data quality flag, indicating the data are rejected. For the wastewater and reclaimed water quality evaluation described in this technical memorandum, this impacts only the metazachlor data, as metolachlor was not analyzed for (this compound was added to the laboratory's standard analytical list after the start of this effort).
- Four compounds (amoxicillin, azithromycin, cimetidine, and nonyl-phenol) show analytical variability on individual days and between days. Therefore, the results for these compounds should be considered semi quantitative (i.e., concentration results are estimates). "J" data quality flags (indicating the value is an estimate) are assigned for all of the results for these compounds (non-detects estimates are assigned a "UJ" flag). All of these chemicals were detected at least once in raw wastewater, while only nonyl-phenol was also detected in reclaimed water.
- Two compounds (nifedipine and theophyline) show concentrations consistently under or over the laboratory control sample (LCS) limits, but no evidence of inconsistent variability or degradation. This appears to be the result of a sample matrix effect or calibration artifact for this sample. "J" data quality flags are assigned for all of the results for these compounds (non-detects are assigned a "UJ" flag). Nifedipine was detected at least once in raw wastewater and in reclaimed water. Theophyline was not analyzed for (this compound was added to the laboratory's standard analytical list after the start of this effort).
- 2) Surrogate Spike Recoveries. Surrogates are organic compounds that are similar in chemical composition, extraction, and chromatography to certain analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analysis. Surrogate spikes were added to each sample for analysis of many of the organic parameters included in this study (e.g., those that were analyzed for using EPA Methods 515.4, 505, 525.2, 524.2, and 551.1). Many surrogate recoveries for these methods were low compared to the methods' control limits for samples of raw wastewater. This reflects a matrix effect associated with the complex organic matrix of raw wastewater. In the majority of these cases, the analytes were non-detect and assigned a "UJ" flag. Surrogate spikes do not apply to the residual chemical parameters, as this quality control procedure is not employed for that method.

- 3) Matrix Spike Recoveries. Another means by which to examine matrix effects is to spike samples with known concentrations of analytes and compare percent recoveries to statistical control limits. This method identified some residual chemicals for which results for certain samples fell outside the quality control limits. The results for these chemicals were flagged according to the results. As described in more detail in Appendix C, the flagged results apply to some reclaimed water, pre-wetland, and post-wetland samples.
- 4) Laboratory Control Sample Spike Recoveries. Laboratory Control Samples (LCS) are samples of known concentration that are carried through the extraction and analysis process. The percent recovery is the percentage of the theoretical concentration, and has statistical control limits indicating that the analytical process is "in control." This method identified some parameters (mostly PBDEs) for which results for certain samples fell outside the quality control limits. The results for these chemicals were flagged according to the results. As described in more detail in Appendix C, the flagged results apply to some raw wastewater, reclaimed water and post-wetland samples.
- 5) Duplicate Field Sample. One duplicate field sample was obtained during one sampling event, for the purpose of calculating relative percent differences (RPDs) between the parent and duplicate samples. RPDs ranged from 0 to 83 percent. Generally a RPD of less than 20 percent is desirable. RPDs that exceeded this threshold may represent variation in chemical concentrations over the time of obtaining the two samples and/or variability within the limits of the laboratory analytical methods at the low observed concentrations.

5.0 Wastewater/Reclaimed Water Quality Monitoring Results

The analytical results for the Budd Inlet Treatment Plant (BITP) and Budd Inlet Reclaimed Water Treatment Plant (BIRWP) are presented first, followed by the analytical results from the Martin Way Reclaimed Water Plant (MWRWP).

5.1 Budd Inlet Reclaimed Water Plant

The results of sampling conducted at the BITP/BIRWP are summarized below. A complete tabular summary of all data is provided in **Appendix B**.

The general conditions at the times of sampling are first described, followed by a summary of conventional wastewater/reclaimed water indicator parameters. Residual chemical results are then presented, followed by a summary of other analytes that were included in the monitoring effort.

5.1.1 Conditions at Times of Sampling

The flow and temperature conditions on the days of sampling are presented in **Table 5-1**. The conditions during Events 1 and 2 were quite different than those of Events 3 and 4. Significant rainfall occurred within the two weeks leading up to each of the first two events of sampling, whereas the late spring and summer sampling occurred during much drier times. Raw wastewater temperatures ranged from a low of 13.1 °C to a high of 22.8 °C.

Other wastewater treatment operating characteristics are also depicted in **Table 5-1**, including the solids retention time, which reflects the average retention time of activated sludge solids in the biological treatment process. A higher SRT reflects a greater amount of solids being recycled or sent back to the start of the biological process, and indicates longer contact time between microorganisms and chemicals that they degrade. The SRT at the BITP was fairly consistent during each sampling event, ranging from 18.6 to 21.6 days.

Table 5-1. Budd Inlet Treatment Plant Summary of Flow and Operating Conditions

Parameter	Units	Sampling Event 1 (11/13/14)	Sampling Event 2 (02/18/15)	Sampling Event 3 (05/20/15)	Sampling Event 4 (08/19/15)
Flow (Influent)	Mgd	9.7	12.09	9.71	8.85
Precipitation (14-day period before sampling)	Inches	3.2	4.1	0.3	0.9
Temperature (Raw Wastewater)	°C	13.9	13.1	18.2	22.8
Mixed Liquor Suspended Solids (MLSS)	mg/L	1,998	1,745	1,910	1,766
Solids Retention Time (SRT)	Days	18.6	21.6	19.3	19.6
Hydraulic Residence Time (HRT)	Hours	14.3	11.5	12.6	13.8

5.1.2 Conventional Parameters

The quality of reclaimed water and efficacy of treatment processes can be evaluated by examining the concentration of nutrients and other water quality indicator parameters, as well as comparing the results with the Ecology permit limitations. A summary of this type of information is provided in **Table 5-2**.

As can be seen by these data, the BITP/BIRWP produces high quality reclaimed water that consistently meets permit requirements. Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) are both less than 5 milligrams per liter (mg/L) on average.

The data suggest that the biological nutrient removal processes were fully underway during sampling Events 2-4, when total nitrogen was less than 4.0 mg/L and ammonia levels were quite low at less than 0.1 mg/L. By contrast, higher nitrogen levels were present during Event 1, reflecting that the BITP was not operating in full BNR mode during that time.

Other indicators of reclaimed water quality are also presented in **Table 5-2**. For example, total organic carbon (TOC) ranged from 5.4 to 12 mg/L, and total phosphorus ranged from 3.1 to 4.6 mg/L.

Table 5-2. Budd Inlet Treatment Plant and Reclaimed Water Plant Summary of Conventional Parameters

				Sampling Eve	ent 1 (11/14)	Sampling Ev	vent 2 (02/15)	Sampling Eve	ent 3 (05/15)	Sampling Ev	ent 4 (10/15)	2015 Annual
Parameter	Unit	MRL	Ecology Permit Limit (Average Monthly)	Influent Wastewater	Reclaimed Water	Influent Wastewater	Reclaimed Water	Influent Wastewater	Reclaimed Water	Influent Wastewater	Reclaimed Water	Average of Reclaimed Water Concentrations (1)
Parameters with Permit Limits												
Biochemical Oxygen Demand (BOD ₅₎	mg/L	3	30 (Nov-Mar) 8 (Apr, May, Oct) 7 (Jun-Sep)	220 J	5	420	ND	260	ND	270	ND	3.01
Total Suspended Solids (TSS)	mg/L	10	30	260	ND	180	ND	460	ND	250	ND	4.06
Turbidity (2)	NTU	0	2		0.35		0.43		0.42		0.15	0.23
Nitrogen												
Total Nitrogen	mg/L	0.2	N/A	51	8.7	50	3.8	65	2.9	82	3	4.71
Nitrate (as N)	mg/L	0.1	10	ND (<0.2)	4.6	ND (<0.2)	2.7	ND (<0.2)	1.9	ND (<0.2)	1.8	2.37
Ammonia (as N)	mg/L	0.05	N/A	34	2.9 J+	31	0.052	41	ND	41	0.06	0.226
Dissolved Oxygen	mg/L	N/A	Measurable	1.4	7.2	3.83	8.37	2.5	7	2.08	6.75	3.92
Total Coliform	MPN/ 100 mL	1	2.2	>241,960 J	9.5 J	>241,960	<1	>241,960	<1	>241,960	3	0.3
рН	units	N/A	6.0-9.0	7.42	7.16	7.26	7.1	7.33	7.16	7.23	6.82	7.01
Other Parameters												
Total Organic Carbon	mg/L	0.3	N/A	81	5.4	110	12	140	6.8	160	9	
Dissolved Organic Carbon	mg/L	0.3	N/A	51	4.8 J+	49	7.9	63	7.1 J+	56	6.5 J+	
Biodegradable Dissolved Organic Carbon	mg/L	0.3	N/A	25	0.7	21	ND	34	0.69	36	ND (<0.6)	
Total Phosphorus	mg/L	0.02	N/A	8.2	4.6	6.8	3.1	9.4	3.8	7.4	4	
Orthophosphate	mg/L	0.01	N/A	4.4	4.8	3.5	2.9	4.6	3.7	4	4.9	

Notes:

ND = Not Detected (i.e., not detected above the method MRL); ND (<#) = Not Detected and Minimum Reporting Limit (MRL) is higher than the method MRL due to dilutions; -- = Analyte not Analyzed; N/A = Not Applicable; MPN = Most Probable Number Data Qualifiers: J = estimated value; J+ = estimated value, biased high

⁽¹⁾ Annual average from LOTT sampling (spreadsheet for 2015 data); not from Study sampling.
(2) All values from HDR field sampling, except for turbidity which was taken from LOTT reported data.

February 7, 2017

This page intentionally left blank.

5.1.3 Residual Chemicals

Table 5-3 summarizes the numbers of detections of residual chemicals at the various sampling locations studied at the BITP/BIRWP. Out of a total of 127 such chemicals analyzed for, up to 67 were detected in raw influent wastewater, while up to 40 were detected in reclaimed water. The greatest numbers of detections in both wastewater and reclaimed water occurred during Event 1. With respect to reclaimed water, the fewer detections in Events 2 to 4 could correlate with the full operation of the BITP BNR process occurring during those time, as described in Section 5.1.2.

Table 5-3. Budd Inlet Reclaimed Water Plant Summary of Residual Chemical Detections

	Sampling Event 1 (11/14)	Sampling Event 2 (02/15)	Sampling Event 3 (05/15)	Sampling Event 4 (08/15)	Average
Total Number of Analytes (1)	127	127	127	127	127
Detections in Wastewater	67	55	50	39	53
Detections in Secondary Effluent		33		28	31
Detections in Reclaimed Water	40	25	23	27	29

Notes:

Table 5-4 contains the 49 residual chemicals that were detected in reclaimed water in at least one event of sampling. Concentrations observed in influent wastewater and reclaimed water are reported. Concentrations observed in secondary effluent are contained within the complete tabular summary in **Appendix B**, along with the qualifiers for all data.

A comparison of the concentrations in reclaimed water versus wastewater is also provided for each chemical in each event. This comparison provides only an approximate evaluation of treatment effectiveness however, because the sampling did not consider retention time. That is, the timing for the collection of pre- and post-treatment water samples did not accommodate the flow of a discrete volume of water through the treatment plant. The scope of this project did not support such precise timing, which would have required more samples and a higher frequency of sampling. However, this calculation does provide a general indication as to the relative difference in concentrations between the influent and effluent water at the BITP/BIRWP.

25

^{-- =} Not analyzed.

⁽¹⁾ Includes all Residual Chemicals, PFCs, PBDEs, EDB, and DBCP.

February 7, 2017

This page intentionally left blank.

Table 5-4. Budd Inlet Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in at least one sampling event)

			Event 1 (11/13/14)			Event 2 (02/18/2015)			Event 3 (5/30/2015)			Event 4 (08/19/15)		
ANALYTE	UNIT	MRL ⁽²⁾	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal
RESIDUAL CHEMICALS														
N-Nitroso dimethylamine (NDMA)	ng/L	2	5.1	4.5	12%	ND UJ	ND	ND	ND UJ	3	NC	ND UJ	2.4	NC
1,4-Dioxane	ug/L	0.07	0.36	0.43	-19%	0.36	0.39	-8%	0.26	0.43	-65%	0.29	0.45	-55%
4-nonylphenol - semi quantitative	Ŭ													
(1)	ng/L	100	3200 J	1100 J	66%	790 J	ND UJ	> 87%	1200 J	110 J	91%	440 J	240 J	45%
4-para-Nonylphenol (1)	ng/L	100	1200	240	80%									
Acesulfame-K	ng/L	20	20000	1300	94%	60000	13000	78%	43000	12000 J+	72%	31000	23	99.9%
Albuterol	ng/L	5	10	5.8	42%	26	ND	> 81%	ND	ND	ND	46 J	ND	> 89%
Atenolol	ng/L	5	650	180	72%	2800	230	92%	2400	190	92%	1900	220	88%
Butalbital	ng/L	5	5.5	ND	> 9%	ND	ND	ND	18	ND	> 72%	6.1	5.9	3%
Caffeine	ng/L	5	53000	ND	> 99%	280000	ND	> 99%	82000	ND	> 99%	97000	76	99%
Carbamazepine	ng/L	5	230	220	4%	370	280	24%	820	260	68%	490	330	33%
Carisoprodol	ng/L	5	5	8.3	-66%	13	21	-62%	ND	ND	ND	ND	ND	ND
Chloramphenicol	ng/L	10	ND	ND	ND	ND	24	NC	ND	ND	ND	ND	ND	ND
Cotinine	ng/L	10	1400	17	99%	3800	21	99%	4400	38 J	99%	2400	130	95%
DACT	ng/L	5	ND	ND	ND	ND	ND	ND	ND	5 J-	NC	ND	ND	ND
DEET	ng/L	10	120	ND	> 92%	130	52	60%	300	27	91%	1100	18	98%
Dehydronifedipine	ng/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.5	NC
Diuron	ng/L	5	11	16	-45%	ND	ND	ND	ND	ND UJ	ND	ND	ND	ND
Dilantin	ng/L	20	150	80	47%	94	85	10%	220	ND	> 91%	ND	ND	ND
Diltiazem	ng/L	5	62	23	63%	68	ND	> 93%	92	ND	> 95%	29	ND	> 83%
Erythromycin	ng/L	10	230	25	89%	44	ND	> 77%	84	ND	> 88%	ND	ND	ND
Estrone (low detection)	ng/L	0.5	2.7	0.91	66%	33	ND	> 98%	ND	ND	ND	ND	ND	ND
Ethinyl Estradiol - 17 alpha (low		0.0		0.0.	0070			0070						
detection)	ng/L	0.5	ND	ND	ND	0.53	ND	> 6%	ND	ND	ND	39	38	3%
Fluoxetine	ng/L	10	400	62	85%	170	54	68%	58	31 J-	47%	38	45	-18%
Gemfibrozil	ng/L	5	800	710	11%	2100	40	98%	3900	14	99%	1900	12	99%
Iohexal	ng/L	10	8400	5000	40%	16000	12000	25%	33000	14000	58%	10000	10000	0%
Iopromide	ng/L	5	14	15	-7%	14	43	-207%	380	62	84%	24	80	-233%
Ketorolac	ng/L	5	120	18	85%	ND	ND	ND	ND	ND	ND	160	ND	> 97%
Lidocaine	ng/L	5	79	120	-52%	270	ND	> 98%	690	ND UJ	> 99%	ND	ND	ND
Lopressor	ng/L	20	290	150	48%	ND	220	NC	840	170 J-	80%	260	210	19%
Meprobamate	ng/L	5	73	26	64%	38	52	-37%	ND	22 J-	NC	ND	41	NC
Metformin	ng/L	10	19000	150	99%	3500	31	99%	84000	790	99%	480000	1500	99%
Naproxen	ng/L	10	48	13	73%	510	ND	> 98%	100	ND	> 90%	9500	ND	> 99%
Pentoxifylline	ng/L	5	ND	ND	ND	24	9.2	62%	ND	9.9 J-	NC	ND	ND	ND
Primidone	ng/L	5	300	180	40%	200	130	35%	220	150	32%	360	200	44%
Quinoline	ng/L	5	18	ND	> 72%	140	ND	> 96%	330	20	94%	130	13	90%
Simazine	ng/L	5	8.8	5.2	41%	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sucralose	ng/L	100	63000	18000	71%	64000	26000	59%	77000	43000 J+	44%	62000	50000	19%
Sulfamethoxazole	ng/L	5	3000	240	92%	1000	ND	> 99%	240	ND	> 98%	2900	90	97%

			Event 1 (11/13/14)			Event 2 (02/18/2015)			Event 3 (5/30/2015)			Event 4 (08/19/15)		
ANALYTE	UNIT	MRL ⁽²⁾	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal
TCEP	ng/L	10	33	53	-61%	33	120	-264%	90	110	-22%	200	200	0%
TCPP	ng/L	100	460	580	-26%	710	740	-4%	730	500	32%	630	610	3%
TDCPP	ng/L	100	160	220	-38%	130	220	-69%	ND	310	NC	180	210	-17%
Theobromine	ng/L	10	12000	13	99%	32000	ND	> 99%	19000	ND	> 99%	20000	57	99%
Thiabendazole	ng/L	5	72	15	79%	ND	ND	ND	ND	ND	ND	ND	ND	ND
Testosterone	ng/L	5	17	ND	> 71%	ND	6.6	NC	ND	ND	ND	ND	ND	ND
Triclosan	ng/L	10	420	19	95%	920	ND	> 99%	540	ND	> 98%	70	ND	> 86%
Trimethoprim	ng/L	5	260	97	63%	410	ND	> 99%	470	ND	> 99%	ND	ND	ND
PFCs														
Perfluoro octanoic acid - PFOA	ng/L	5	ND	7.4 J	NC	ND	5.6	NC	ND	ND	ND	ND	ND	ND
Perfluoro-n-hexanoic acid	ng/L	5	ND	17	NC	ND	8.8	NC	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid	ng/L	5	26	10	62%			-	ND	ND	ND	ND	ND	ND
PBDEs/EDB/DBCP														
Fipronil	ng/L	2	4.1 J-	46	-1022%			-	ND UJ	ND UJ	ND	5.1 J-	ND	> 61%

Notes:

MRL = Minimum Reporting Level; ND = Not Detected above MRL; ND (<#) = Not Detected and MRL is higher than the method MRL due to dilutions;

--- = Analyte not Analyzed; NC = Not Calculated. Analyte was not detected in wastewater, but was detected in reclaimed water.

 $mg/L = milligrams per liter (ppm); \mu g/L = micrograms per liter (ppb); ng/L = nanograms per liter (ppt)$

Data Qualifiers: J = estimated value; J+ = estimated value, biased high; J- = Estimated Value, biased low; UJ = non-detect (estimated)

PFC = Perfluorinated Compound; PBDE = Polybrominated Diphenyl Ether; VOC = Volatile Organic Compound

% Removal = [1 - (Reclaimed Water Concentration/ Wastewater Influent Concentration)] x 100. Percent removals are considered estimates.

Positive values indicate Reclaimed Water concentration less than Wastewater concentration.

Negative values indicate Reclaimed Water concentration greater than Wastewater concentration.

Values preceded by ">" indicate the analyte was not detected in Class A Reclaimed Water. Therefore, percent removal is calculated based on MRL.

- (1) "4-nonylphenol semi quantitative" and "4-para-Nonylphenol" are the same chemical, but are listed separately as they were run by different methods.
- (2) Listed MRLs are for undiluted samples only.

In some instances, the reclaimed water concentration is depicted as being higher than that in wastewater (indicated in **Table 5-4** by negative percent removal values). In a majority of such cases, this is due to the increased potential for signal suppression (i.e., the presence of certain organic compounds that "mask" or "hide" the presence of other organic compounds that occur at much lower concentrations) in the LC-MS-MS analysis of the complex wastewater matrix, as compared to the reclaimed water matrix. As described in the data validation report (**Appendix C**), surrogate spikes were used for some chemicals analyzed by EPA methods, so as to determine extraction recoveries. In the case of some chemicals (e.g., 1,4-dioxane, fipronil), surrogate recoveries were low in the wastewater samples. In these situations, the results were qualified as estimates. However, this quality control method is not employed with the laboratory's method used for the majority of the residual chemicals. Yet, because of known signal suppression potential in wastewater matrices, the calculated percent removals depicted in **Table 5-4** should be considered estimates.

For those chemicals that were detected in Event 1 as well as in at least one additional event, concentrations in reclaimed water were often higher in Event 1, and percent removal lower, as compared to subsequent events. Gemfibrozil exhibited this trend, with an Event 1 reclaimed water concentration of 710 nanograms per liter (ng/L), and a range of concentrations in subsequent events of 12-40 ng/L. Exceptions to this trend include metformin, the concentrations of which varied significantly between 31 and 1,500 ng/L, with the highest concentration occurring in Event 4.

Seventeen chemicals (of the 49 listed in Table 5-4) were detected in reclaimed water in all four events. **Table 5-5** lists this subset of 17 chemicals, along with the range of concentrations observed and average percent removal between reclaimed water and wastewater. The chemicals routinely present at the highest concentrations are the artificial sweeteners sucralose and acesulfame-K, and the x-ray contrast agent iohexal. Atenolol, cotinine, and metformin were all present in reclaimed water but at concentrations significantly less than (i.e., less than 80% of) those in raw wastewater. The following chemicals were observed to be present at higher concentrations in reclaimed water than in wastewater (as indicated by negative percent removals in Table 5-5): 1,4-dioxane, iopromide, TCEP, and TDCPP. As noted previously, this could be a function of the concentrations in wastewater being underestimated due to signal suppression in the LC-MS-MS analysis. It could also reflect little to no removal through the treatment process (i.e., concentrations being similar in raw wastewater and reclaimed water). Of those chemicals for which positive percent removals were determined, the following had the smallest differences in concentrations between raw wastewater and reclaimed water, thereby indicating resistance to removal through the reclaimed water treatment processes: iohexal (31%), carbamazepine (32%), and primidone (38%).

Table 5-5. Budd Inlet Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in all sampling events)

Detected Chemical	Range of Concentration (ng/L)	Average Concentration (ng/L)	Average % Removal (Reclaimed Water Compared to Wastewater)		
1,4-Dioxane	390-450	425	-37		
Acesulfame-K	23-13000	6581	86		
Atenolol	180-230	205	86		
Carbamazepine	220-330	275	32		
Cotinine	17-130	52	98		
Fluoxetine	31-62	48	46		
Gemfibrozil	12-710	194	77		
lohexal	5000-14000	10250	31		
lopromide	15-80	50	-91		
Lopressor	150-220	188	49		
Meprobamate	22-52	35	14		
Metformin	31-1500	618	99		
Primidone	130-200	165	38		
Sucralose	18000-50000	34250	48		
TCEP	53-200	121	-87		
TCPP	500-740	620	1		
TDCPP	210-310	240	-41		

Notes:

Negative values indicate that the value in reclaimed water was greater than that in wastewater (and in some sampling events, the analyte may not have been detected in wastewater).

5.1.4 Other Parameters

A wide range of additional parameters were analyzed during this effort. All data are presented in the tabular summary in **Appendix B**. Summaries are provided below.

Disinfection Byproducts

Disinfection byproducts (DBPs) were observed in reclaimed water, likely a result of added chlorine reacting with organic matter in the treated wastewater. Total trihalomethanes (TTHMs) ranged from 13 to 68 micrograms per liter (μ g/L), comprised mainly of chloroform and bromodichloromethane. Total haloacetic acids (HAAs) ranged from 26 to 62 μ g/L. DBP concentrations were highest in Events 3 and 4.

Pesticides/Herbicides

In addition to the few pesticides and herbicides that were analyzed for in the suite of residual chemicals, the complete list of such compounds included in EPA Methods 505 and 515.4 were also analyzed. Only one detection was observed in reclaimed water: dalapon, at 1.7 μ g/L in Event 4.

Volatile and Semivolatile Organic Compounds

The full suite of analytes included in EPA Methods 524.2 (VOCs) and 525.2 (SVOCs) were analyzed. Only one detection was observed in reclaimed water: dichloromethane, at 0.56 µg/L in Event 4. The negligible detection of VOC/SVOC parameters is likely for a few reasons:

- A) There are not many industrial dischargers into the wastewater collection system.
- B) The industrial dischargers are regulated to prohibit industrial solvents or other similar chemicals.
- C) The treatment system involves extensive aeration and VOCs/SVOCs would be removed during that process.

Metals

Four dissolved metals, as analyzed for in EPA Methods 200.8 and 245.1, were detected in reclaimed water in all four events. Average concentrations of arsenic, barium, copper, and zinc in reclaimed water were 1.5 μ g/L, 4.5 μ g/L, 7.6 μ g/L, and 63.3 μ g/L, respectively. Metals concentrations were relatively consistent amongst the four events, with the exceptions of copper and zinc levels in Event 4 being higher than those in prior events.

Metals analyzed for in EPA Method 200.7, such as calcium, iron, and magnesium, were consistently detected in reclaimed water at concentrations typical of Class A reclaimed water.

5.1.5 Comparison of Secondary Effluent and Reclaimed Water

As noted previously, the BIRWP receives only a portion of the total amount of water processed at the BITP, to produce reclaimed water. The remaining treated water produced at the BITP is discharged as secondary effluent into Budd Inlet. The detailed results from the sampling of secondary effluent during Events 2 and 4 are provided in **Appendix B**.

The quality of secondary effluent is quite consistent with that of reclaimed water, particularly with respect to residual chemicals. As summarized in **Table 5-3**, the number of detections in secondary effluent is very similar to that of reclaimed water. This is an indication that the majority of residual chemical removal is occurring in the BITP treatment processes, with little additional removal occurring in the filtration and chlorine disinfection steps added at the BIRWP.

For those chemicals that are present in both waters, concentrations are typically similar. Exceptions include gemfibrozil, sulfamethoxazole, and trimethoprim, concentrations of which are summarized in **Figure 5-1**. For these chemicals, concentrations in reclaimed water (typically non-detect) were notably less than those in secondary effluent (where detections were well above the MRL).

Event 2 (02/18/2015)

Event 4 (08/19/2015)

Figure 5-1. Residual Chemicals with Differing Concentrations in Secondary Effluent and Reclaimed Water (Events 2 and 4).

5.2 Martin Way Reclaimed Water Plant

The results of sampling conducted at the MWRWP are summarized below. A complete tabular summary of all data is provided in **Appendix B**.

The general conditions at the times of sampling are first described, followed by a summary of conventional wastewater/reclaimed water indicator parameters. Residual chemical results are then presented, followed by a summary of other analytes that were included in the monitoring effort.

5.2.1 Conditions at Times of Sampling

The flow and temperature conditions on the days of sampling are presented in **Table 5-6**. The conditions during sampling Events 1 and 2 were quite different than those of Events 3 and 4. Significant rainfall occurred within the two weeks leading up to each of the first two events of sampling, whereas the late spring and late summer sampling occurred during much drier times. Raw wastewater temperatures ranged from a low of 14.3 °C to a high of 19.2 °C.

Other wastewater treatment operating characteristics are also depicted in **Table 5-6**, including the solids retention time, which reflects the average retention time of suspended solids in the biological treatment process. The SRT at the MWRWP was fairly consistent during each sampling event, ranging from 33 to 40 days.

Table 5-6. Mart	n Way Reclaimed Water Plant Summary of Flow and Operating	J
Cond	itions	

Parameter	Units	Sampling Event 1 (11/12/14)	Sampling Event 2 (02/17/15)	Sampling Event 3 (05/20/15)	Sampling Event 4 (10/07/15)
Flow (Influent)	mgd	1.461	1.388	1.055	1.278
Precipitation (14-day period before sampling)	inches	3.2	4.1	0.3	0.2
Temperature (Raw Wastewater)	°C	14.3	17.2	17.9	19.2
Mixed Liquor Suspended Solids (MLSS)	mg/L	9,420	11,330	9,240	10,658
Solids Retention Time (SRT)	Days	35	40	33	38
Hydraulic Residence Time (HRT)	Hours	2.5	2.6	2.5	2.5

5.2.2 Conventional Parameters

The quality of reclaimed water and efficacy of treatment processes can be evaluated by examining the concentration of nutrients, and other water quality indicator parameters comparing the results with the Ecology discharge permit limitations. A summary of this type of information is provided in **Table 5-7**.

As can be seen by these data, the MWRWP produces high quality reclaimed water that consistently meets permit requirements. BOD is less than approximately 2.0 mg/L on average and TSS is less than 0.2 mg/L. Turbidity is maintained at an average of 0.07 NTU.

February 7, 2017

This page intentionally left blank.

Table 5-7. Martin Way Reclaimed Water Plant Summary of Conventional Parameters

	Unit		Ecology Permit RL Limit (Average Monthly)	Sampling Eve	ent 1 (11/14)	Sampling Ev	vent 2 (02/15)	Sampling Ev	ent 3 (05/15)	Sampling Event 4 (10/15)		2015 Annual
Parameter		MRL		Influent Wastewater	Reclaimed Water	Influent Wastewater	Reclaimed Water	Influent Wastewater	Reclaimed Water	Influent Wastewater	Reclaimed Water	Average of Reclaimed Water Concentrations (1)
Parameters with Permit Limits												
Biochemical Oxygen Demand (BOD ₅₎	mg/L	3	20	320 J	1.1 J	280	ND	260	ND	220 J	ND	2.03
Total Suspended Solids (TSS)	mg/L	10	30	210	ND	200	ND	180	ND	180	ND	0.2
Turbidity (2)	NTU	0	0.2		0.09		0.08		0.07		0.06	0.07
Nitrogen												
Total Nitrogen	mg/L	0.2	10	63	6.7	73	9.5	80	6.8	80	8.6	7.73
Nitrate (as N)	mg/L	0.1	N/A	ND (<0.2)	4.6	ND (<0.2)	8.7	ND (<0.2)	5.4	ND (<0.2)	7.5	6.36
Ammonia (as N)	mg/L	0.05	N/A	44 J+	1.1	40	0.82	59	0.33	44	1.1	1.09
Dissolved Oxygen	mg/L	N/A	Measurable	2.48	5.46	2.03	5.56	1.9	4.2	3.74	5.35	3.92
Total Coliform	MPN/ 100 mL	1	2.2	>241,960 J	<1 J	>241,960	<1	>241,960	<1	>241,960	3	0
рН	Units	N/A	6.0-9.0	7.82	7.21	7.68	7.06	7.62	7.03	7.62	7.21	7.09
Other Parameters												
Total Organic Carbon	mg/L	0.3	N/A	92	6.4	94	13	93	6.4	110	5	-
Dissolved Organic Carbon	mg/L	0.3	N/A	64	5.5	58	5.9	42	6.5	56	5.1	
Biodegradable Dissolved Organic Carbon	mg/L	0.3	N/A	24	0.76 J+	23	0.62 J+	ND (<1.5)	ND (<0.6)	27	0.5	
Total Phosphorus	mg/L	0.02	N/A	8.2	3.6	9.9	3.9	9.9	3.2	9	3.8	
Orthophosphate	mg/L	0.01	N/A	4.8	3.3	6	3.1	6.1	3	4.5	3.1	

ND = Not Detected (i.e., not detected above the method MRL); ND (<#) = Not Detected and Minimum Reporting Limit (MRL) is higher than the method MRL due to dilutions; -- = Analyte not Analyzed; N/A = Not Applicable; MPN = Most Probable Number

Data Qualifiers: J = estimated value; J+ = estimated value, biased high

- (1) Annual average from LOTT sampling (spreadsheet for 2015 data); not from Study sampling.
 (2) All values from HDR field sampling, except for turbidity which was taken from LOTT reported data.

February 7, 2017

This page intentionally left blank.

Total nitrogen concentrations were observed to be within the permit limit of 10 mg/L during all events, though levels approached that limit in Events 2 and 4. Nitrate concentrations ranged from 4.6 to 8.7 mg/L throughout the events.

Other indicators of reclaimed water quality are also presented in **Table 5-7**. For example, TOC ranged from 5.0 to 13 mg/L, and total phosphorus ranged from 3.2 to 3.9 mg/L. These results are similar to those of the BIRWP.

5.2.3 Residual Chemicals

Table 5-8 summarizes the numbers of detections of residual chemicals at the various sampling locations studied at the MWRWP. Out of a total of 127 such chemicals analyzed for, up to 65 were detected in raw influent wastewater, while up to 47 were detected in reclaimed water. The greatest numbers of detections in both wastewater and reclaimed water occurred during Event 1, a trend similar to that observed in the BITP/BIRWP data.

Table 5-8. Martin Way Reclaimed Water Plant Summary of Residual Chemical Detections

	Sampling Event 1 (11/14)	Sampling Event 2 (02/15)	Sampling Event 3 (05/15)	Sampling Event 4 (10/15)	Average
Total Number of Analytes (1)	127	127	127	127	127
Detections in Wastewater	65	49	49	44	52
Detections in Reclaimed Water	47	27	30	30	34
Detections in Water Entering Wetlands	25			28	27
Detections in Water Exiting Wetlands/Entering Recharge Basins	44	26	23	29	31

Notes:

Table 5-9 contains the 47 residual chemicals that were detected in reclaimed water in at least one event of sampling. Concentrations observed in wastewater and reclaimed water are reported. Concentrations observed in water entering and exiting the wetland ponds are contained within the complete tabular summary in **Appendix B**, along with the qualifiers for all data.

A comparison of the concentrations in reclaimed water versus wastewater is also provided for each chemical in each event. This cannot be considered a fully accurate depiction of constituent removal, or treatment effectiveness, because sampling was not "flow paced" in an attempt to sample the same volume of water as it progressed as discrete flow though the wastewater and reclaimed water treatment processes. However, this calculation does provide a general indication as to the relative difference in concentrations between the influent and effluent water at the MWRWP.

^{-- =} Not analyzed

⁽¹⁾ Includes all Residual Chemicals, PFCs, PBDEs, EDB, and DBCP.

February 7, 2017

This page intentionally left blank.

Table 5-9. Martin Way Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in at least one sampling event)

			Even	nt 1 (11/12/201	14)	Ever	nt 2 (02/17/20 ²	15)	Ever	nt 3 (05/20/20	15)	Event 4 (10/07/2015)		
ANALYTE	UNIT	MRL ⁽¹⁾	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal
RESIDUAL CHEMICALS														
1,4-Dioxane	ug/L	0.07	0.46 J-	0.72	-57%	0.71	0.73	-3%	0.38	0.73	-92%	0.44	0.71	-61%
1,7-Dimethylxanthine	ng/L	10	ND	36	NC	1100	ND	> 99%	410	ND	> 98%	660	ND	> 98%
2,4-D	ng/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	23	16	30%
4-nonylphenol - semi														
quantitative	ng/L	100	1600 J	180 J	89%	3600 J	ND UJ	> 97%	1200 J	670 J	44%	ND UJ	110 J	NC
4-tert-octylphenol	ng/L	50	ND	ND	ND	ND	ND	ND	230	ND	> 78%	ND	73	NC
Acesulfame-K	ng/L	20	24000	220	99%	54000	850	98%	57000	830	99%	300000	180	99%
Acetaminophen	ng/L	5	42000	7	99%	120000	ND	> 99%	98000	ND	> 99%		ND	ND
Atenolol	ng/L	5	640	36 J-	94%	3000	110	96%	3200	75	98%	1500 J	62 J	96%
Butalbital	ng/L	5	ND	11	NC	8.4	7.3	13%	17	9.8	42%	ND	9.5	NC
Carbamazepine	ng/L	5	250	200	20%	580	300	48%	490	240	51%	230	190	17%
Carisoprodol	ng/L	5	ND	10	NC	ND	110	NC	ND	ND	ND	ND	ND	ND
Chloridazon	ng/L	5	ND	9.2	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cotinine	ng/L	10	1900	17	99%	3600	23	99%	5200	54	99%	1800	13	99%
Cyanazine	ng/L	5	ND	6	NC	5.6	ND	> 11%	ND	ND	ND	ND	ND	ND
DACT	ng/L	5	ND	12	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEET	ng/L	10	210	11	95%	ND	140	NC	370	41	89%	390	ND	> 97%
Dehydronifedipine	ng/L	5	5.4	ND	> 7%	ND	ND	ND	ND	8.7	NC	ND	ND	ND
Diazepam	ng/L	5	7.5	ND	> 33%	ND	9.3	NC	ND	ND	ND	ND	ND	ND
Diclofenac	ng/L	5	ND	ND	ND	170	ND	> 97%	ND	55	NC	180	9.6	95%
Diuron	ng/L	5	5.2	6.5	-25%	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dilantin	ng/L	20	170	92	46%	ND	72	NC	690	120	83%	ND	ND	ND
Diltiazem	ng/L	5	120	18	85%	150	ND	> 97%	73	5.6	92%	32	ND	> 84%
Erythromycin	ng/L	10	100	16 J+	84%	37	ND	> 73%	270	ND	> 96%	ND	ND	ND
Flumegine	ng/L	10	510	65	87%	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoxetine	ng/L	10	ND	65 J+	NC	ND	62	NC	48	26	46%	85	35	59%
Gemfibrozil	ng/L	5	1100	94	91%	3700	ND	> 99%	7100	130	98%	14000	19	99%
Ibuprofen	ng/L	10	460	ND	> 98%	21000	ND	> 99%	ND	ND	ND	2900	25	99%
lohexal	ng/L	10	1800	240	87%	15000	410	97%	2600	860	67%	13000	270	98%
Iopromide	ng/L	5	17	9.1	46%	22	61	-177%	7.6	23	-203%	12000	510	96%
Ketorolac	ng/L	5	7.9	14	-77%	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lidocaine	ng/L	5	58	55	5%	690	ND	> 99%	220	73	67%	180	12	93%
Lopressor	ng/L	20	370	280	24%	ND	190	NC	1100	190	83%	ND	290	NC
Meprobamate	ng/L	5	55	31	44%	68	60	12%	ND	ND	ND	ND	17	NC
Metformin	ng/L	10	29000	190	99%	6800	61	99%	220000	2600	99%	180000	2200	99%
Naproxen	ng/L	10	10	25	-150%	5200	ND	99%	460	32	93%	69000	ND	99%
Nifedipine	ng/L	20	58 J	20 J	66%	64 J	ND UJ	> 69%	ND UJ	ND UJ	95 % ND	ND UJ	ND UJ	99 76 ND
Oxolinic acid	ng/L	10	190	36	81%	ND	ND 03 ND	ND	ND 03	ND 03 ND	ND ND	ND 03	ND 03 ND	ND ND
Pentoxifylline		5	ND	ND	ND	820	7.6	99%	ND ND	ND ND	ND ND	210	ND ND	> 98%
•	ng/L	5						32%			41%			
Primidone	ng/L	5	33	64 J+	-94%	280	190	3 2%	220	130	41%	170	170	0%

			Event 1 (11/12/2014)			Ever	Event 2 (02/17/2015)			nt 3 (05/20/201	15)	Event 4 (10/07/2015)		
ANALYTE	UNIT	MRL ⁽¹⁾	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal	Wastewater	Reclaimed Water	% Removal
Quinoline	ng/L	5	32	7.8	76%	270	ND	> 98%	140	28	80%	250	ND	> 98%
Simazine	ng/L	5	11	6.1	45%	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sucralose	ng/L	100	100000	52000	48%	62000	35000	44%	89000	68000	24%	410000	50000	88%
Sulfadiazine	ng/L	5	ND	14	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sulfamethoxazole	ng/L	5	1800	320	82%	2200	19	99%	1600	ND	> 100%	1800	87	95%
TCEP	ng/L	10	110	39 J-	65%	47	120	-155%	ND	130	NC	ND	120	NC
TCPP	ng/L	100	1000	240	76%	1000	560	44%	740	200	73%	1100	270	75%
TDCPP	ng/L	100	360	190	47%	360	230	36%	ND	ND	ND	510 J	130	75%
Theobromine	ng/L	10	1100	ND	> 99%	27000	66	99%	19000	ND	> 100%	710	ND	> 99%
Thiabendazole	ng/L	5	130	200	-54%	ND	ND	ND	ND	ND	ND	ND	ND	ND
Testosterone	ng/L	5	15	ND	> 67%	ND	6.1	NC	ND	ND	ND	ND	ND	ND
Triclosan	ng/L	10	570	ND	> 98%	1100	ND	> 99%	480	13	97%	1500	ND	> 99%
Trimethoprim	ng/L	5	180	8.3	95%	530	ND	> 99%	720	13	98%	390	ND	> 99%
PFCs														
Perfluoro octanoic acid - PFOA	ng/L	5	5.5 J	16 J	-191%	ND	20	NC	ND	ND	ND	ND	16	NC
Perfluoro-1- butanesulfonate	ng/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.3	NC
Perfluoro-1- butanesulfonic acid	ng/L	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	9.6	NC
Perfluoro-n-hexanoic acid	ng/L	5	14	23	-64%	5.2	81	-1458%	ND	18	NC	12	46	-283%
Perfluoropentanoic acid	ng/L	5	74	29	61%			NC	7.1	31	-337%		79	NC
PBDEs/EDB/DBCP														
Fipronil	ng/L	2	2.7 J-	51	-1789%			NC	2.9	36	-1141%	ND	ND	ND
Dibromochloropropane (DBCP)	ug/L	0.01	ND	0.011	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

MRL = Minimum Reporting Level; ND = Not Detected above MRL; ND (<#) = Not Detected and MRL is higher than the method MRL due to dilutions;

^{-- =} Analyte not Analyzed; NC = Not Calculated. Analyte was not detected in wastewater, but was detected in reclaimed water.

 $mg/L = milligrams per liter (ppm); \mu g/L = micrograms per liter (ppb); ng/L = nanograms per liter (ppt)$

Data Qualifiers: J = estimated value; J+ = estimated value, biased high; J- = Estimated Value, biased low; UJ = non-detect (estimated)

PFC = Perfluorinated Compound; PBDE = Polybrominated Diphenyl Ether; VOC = Volatile Organic Compound

[%] Removal = Difference between concentration in Reclaimed Water and Wastewater. Percent removals are considered estimates.

Positive values indicate Reclaimed Water concentration less than Wastewater concentration.

Negative values indicate Reclaimed Water concentration greater than Wastewater concentration.

Values preceded by ">" indicate the analyte was not detected in Class A Reclaimed Water. Therefore, percent removal is calculated based on MRL.

^{(1).} Listed MRLs are for undiluted samples only.

Similar to the BITP/BIRWP data, in some instances the reclaimed water concentration is depicted as being higher than that in wastewater (indicated in **Table 5-9** by negative percent removal values). In a majority of such cases, this is due to the increased potential for signal suppression (i.e., the presence of certain organic compounds that "mask" or "hide" the presence of other organic compounds that occur at much lower concentrations) in the LC-MS-MS analysis of the complex wastewater matrix, as compared to the reclaimed water matrix. As described in the data validation report (**Appendix C**), surrogate spikes were used for some chemicals analyzed by EPA methods, so as to determine extraction recoveries. In the case of some chemicals (e.g., 1,4-dioxane, fipronil), surrogate recoveries were low in the wastewater samples. In these situations, the results were qualified as estimates. However, this quality control method is not employed with the laboratory's method, which is used for the majority of the residual chemicals. Yet, because of known signal suppression potential in wastewater matrices, the calculated percent removals depicted in **Table 5-9** should be considered estimates.

In general, there are no significant trends observed in the data, such as reclaimed water concentrations being notably higher in one event versus others. In most cases, chemicals detected in more than one event were observed at similar concentrations. Two notable exceptions to this are Primidone (observed at 64 ng/L in reclaimed water in Event 1, while its levels averaged 163 ng/L for the three subsequent events), and Metformin (concentrations of which varied greatly from 61 to 2,600 ng/L).

Sixteen chemicals (of the 47 listed in **Table 5-9**) were detected in reclaimed water in all four events. **Table 5-10** lists this subset of 16 chemicals, along with the range of concentrations observed and average percent removal between reclaimed water and wastewater. The chemicals routinely present at the highest concentrations are the artificial sweeteners sucralose and acesulfame-K, metformin, 1,4-dioxane, and the x-ray contrast agent iohexal. Atenolol and cotinine were present in reclaimed water but at concentrations significantly less than (i.e., less than 80% of) those in raw wastewater. The following chemicals were observed to be present at higher concentrations in reclaimed water than in wastewater (as indicated by negative percent removals in Table 5-10): 1,4-dioxane, iopromide, primidone, TCEP, and Perfluoro-n-hexanoic acid. As noted previously, this could be a function of the concentrations in wastewater being underestimated due to signal suppression in the LC-MS-MS analysis. It could also reflect little to no removal through the treatment process (i.e., concentrations being similar in raw wastewater and reclaimed water). Of those chemicals for which positive percent removals were determined, the following had the smallest differences in concentrations between raw wastewater and reclaimed water, thereby indicating resistance to removal through the reclaimed water treatment processes: butalbital (28%) and carbamazepine (34%).

Table 5-10. Martin Way Reclaimed Water Plant Residual Chemicals Detected in Reclaimed Water (in all sampling events)

Detected Chemical	Range of Concentration (ng/L)	Average Concentration (ng/L)	Average % Removal (Reclaimed Water Compared to Wastewater)
1,4-Dioxane	710-730	723	-53
Acesulfame-K	180-850	520	99
Atenolol	36-110	71	96
Butalbital	7.3-11	9	28
Carbamazepine	190-300	233	34
Cotinine	13-54	27	99
Fluoxetine	35-65	47	53
Iohexal	240-860	445	87
Iopromide	9.1-510	151	-60
Lopressor	190-290	238	54
Metformin	61-2600	1263	99
Primidone	64-190	139	-5
Sucralose	35000-68000	51250	51
TCEP	39-130	102	-45
TCPP	200-560	318	67
Perfluoro-n-hexanoic acid	18-81	42	-602

Notes:

Negative values indicate that the value in reclaimed water was greater than that in wastewater (and in some sampling events, the analyte may not have been detected in wastewater).

5.2.4 Other Parameters

A wide range of additional parameters were analyzed during this effort. All data are presented in the tabular summary in **Appendix B**. Summaries are provided below.

Disinfection Byproducts

DBPs were observed in reclaimed water, likely a result of added chlorine reacting with organic matter in the treated wastewater. TTHMs ranged from 15 to 21 μ g/L, comprised mainly of chloroform and bromodichloromethane. HAAs ranged from 32 to 41 μ g/L. DBP concentrations were fairly consistent amongst the events.

Pesticides/Herbicides

In addition to the few pesticides and herbicides that were analyzed for in the suite of residual chemicals, the complete list of such compounds included in EPA Methods 505 and 515.4 were also analyzed. One detection was observed in reclaimed water: dalapon, at 1.8 µg/L in Event 4.

Volatile and Semivolatile Organic Compounds

The full suite of analytes included in EPA Methods 524.2 (VOCs) and 525.2 (SVOCs) were analyzed for. One detection was observed in reclaimed water: hexachlorocyclopentadiene, at $0.052~\mu g/L$ in Event 4.

Metals

No dissolved metals, as analyzed for in EPA Methods 200.8 and 245.1, were detected in reclaimed water in all four events. Four metals were detected in three events. Average concentrations of barium, copper, manganese, and zinc in reclaimed water were 8.3 μ g/L, 11 μ g/L, 26 μ g/L, and 83 μ g/L, respectively.

Metals analyzed for in EPA Method 200.7, such as calcium, iron, and magnesium, were consistently detected in reclaimed water at concentrations typical of Class A reclaimed water.

5.2.5 Effect of Wetland Ponds on Reclaimed Water Quality

As discussed in Section 3, Class A reclaimed water produced at the MWRWP is conveyed through approximately three miles of pipeline north, where the water then enters the Hawks Prairie Ponds. The water flows through the five lined wetlands in series, over the course of approximately 20 days (at an average reclaimed water flow rate to the ponds of 0.5 mgd), prior to then infiltrating the shallow aquifer via the recharge basins. **Figure 5-2** provides a schematic illustration of this.

Figure 5-2. Flow of Water from MWRWP to Hawks Prairie Infiltration Basins

During Events 1 and 4, sampling was conducted of the water entering and exiting the wetland ponds, in order to assess impacts upon water quality imparted by the wetlands. Of the 16 residual chemicals detected in reclaimed water during all four events (**Table 5-10**), most demonstrated no appreciable changes or trends in observed concentrations between the preand post-wetlands samples. Other studies have shown wetlands to attenuate some residual chemicals, such as gemfibrozil and ibuprofen (through biodegradation, photolysis, and sorption), while other chemicals such as primidone and TCEP have been shown to exhibit low removals (Guo et al., 2010). It is noted that the Hawks Prairie Ponds do have significant algal and macrophyte growth at times, which would impede photolysis.

Results at the Hawks Prairie Ponds are variable for many chemicals, such as acesulfame-K, sucralose, metformin, TCEP, and TCPP (meaning in some events pre-wetland concentrations are greater than post-wetland concentrations, while in other events the reverse is true). A trend of post-wetland concentrations being less than pre-wetland concentrations in all sampling events was observed for the following four chemicals: 1,4-dioxane, atenolol, fluoxetine, and lopressor. These results suggest that additional removal or transformation of these chemicals may occur within the wetlands. However, it is noted that because raw wastewater concentrations for three of these chemicals are lower than the post-wetlands concentrations

(i.e., 1,4-dioxane in both events, and fluoxetine and lopressor in one event each), the effect of the wetlands on these chemicals is uncertain. **Figure 5-3** summarizes the results for these chemicals for Events 1 and 4.

It is also noted that total nitrogen and nitrate concentrations are decreased through the wetlands. For example, nitrate concentrations in the Class A reclaimed water average 6.6 mg/L over the four events, compared with concentrations in water discharging from the wetland ponds averaging 2.8 mg/L. Phosphorus concentrations remain relatively unchanged in pre- and post-wetland samples. Nitrate removal is primarily a result of biological processing and nitrification/denitrification of nitrogen in the wetlands, whereas phosphorus removal is mainly through sorption to clay substrate. It is fairly common for phosphorus removal efficiency in wetlands to decrease over time as the clay sorption capacity decreases over time.

The hormone Estrone, which was not detected in reclaimed water during any sampling event, was detected at low concentrations (0.75 - 1.9 ng/L) in post-wetlands water during three of the sampling events.

Event 1 (11/12/2014)

Event 4 (10/07/2015)

Figure 5-3. Comparison of Pre-Wetlands and Post-Wetlands Water Quality for Select Residual Chemicals (Events 1 and 4)

6.0 Discussion

6.1 Summary of Results

Characterization of reclaimed water produced by LOTT was conducted through quarterly sampling of wastewater and reclaimed water, between November 2014 and October 2015, at LOTT's two reclaimed water treatment facilities: the BIRWP and the MWRWP. The characterization was focused on influent wastewater and reclaimed water, but also involved sampling of LOTT's secondary effluent, which is produced at the BITP and is discharged into Puget Sound. Reclaimed water entering and exiting the Hawks Prairie Wetland Ponds was also analyzed.

The results of this characterization effort indicate that:

- LOTT's two reclaimed water treatment facilities produce high quality Class A reclaimed water that consistently meets permit requirements with respect to conventional wastewater treatment parameters like BOD and TSS, nitrogen removal, and pathogen reduction.
- Many residual chemicals detected consistently in raw wastewater were removed to below detection limits in LOTT's reclaimed water. Table 6-1 provides the list of chemicals for which this pattern was exhibited. These chemicals were present in wastewater in at least three of the four sampling events, but were removed to levels below detection in reclaimed water in at least three of the sampling events. These data indicate that LOTT's treatment processes are highly effective at removing these particular chemicals.

Table 6-1. Residual Chemicals Consistently Observed in LOTT Wastewater for which LOTT's Treatment Facilities Exhibit Efficient Removal to Non-Detect Levels

Residual Chemical	BIRWP	MWRWP
1,7-Dimethylxanthine	х	х
Acetaminophen	х	х
Albuterol	х	
Amoxicillin	х	х
Andorostenedione		х
Bisphenol A		х
Butalbital	х	
Butylparben	х	х
Caffeine	х	х
Cimetidine	х	х
Diltiazem	х	
Erthromycin	х	х
Estradiol-17	х	
Estrone	Х	Х
Ethylparaben	х	х
Ibuprofen	х	х
Lidocaine	х	
Naproxen	х	
Nonylphenol Diethoxylate	х	
Progesterone		х
Propylparaben	х	х
Triclosan	х	х
Trimethoprim	Х	

• The occurrence of observed residual chemicals in the treated reclaimed water was fairly consistent at both facilities, in terms of the chemicals observed most frequently and their concentrations, as summarized in **Table 6-2**. Residual chemical removal efficiencies were also similar at both facilities. A notable exception to this general finding is iohexal. Detected at both facilities, the concentration of this x-ray contrast agent was markedly higher in BIRWP reclaimed water than in MWRWP reclaimed water. Removal efficiencies were also greater at the MWRWP (i.e., 87%, compared to 31% at BIRWP). This could reflect the presence of more hospital and clinic wastewater in the BITP influent as compared to that of the MWRWP.

Table 6-2. Comparison of Concentrations and Removals of Residual Chemicals

Detected in Reclaimed Water in all Events at Either BIRWP and MWRWP

	BIRWI)	MWRW	P
Detected Chemical	Range of Concentration (ng/L)	Average % Removal	Range of Concentration (ng/L)	Average % Removal
1,4-Dioxane	390-450	-37	710-730	-53
Acesulfame-K	23-13,000	86	180-850	99
Atenolol	180-230	86	36-110	96
Butalbital	ND-5.9	28	7.3-11	28
Carbamazepine	220-330	32	190-300	34
Cotinine	17-130	98	13-54	99
Fluoxetine	31-65	50	35-65	53
Gemfibrozil	12-710	77	ND-130	97
Iohexal	5,000-14,000	31	240-860	87
Iopromide	15-80	-91	9.1-510	-60
Lopressor	150-220	49	190-290	54
Meprobamate	22-52	14	ND-60	28
Metformin	31-1,500	99	61-2,600	99
Primidone	130-200	38	64-190	-5
Sucralose	18,000-50,000	48	35,000-68,000	51
TCEP	53-200	-87	39-130	-45
TCPP	500-740	1	200-560	67
TDCPP	210-310	-41	ND-230	53
Perfluoro-n-hexanoic acid	ND-17	NC	18-81	-602

Notes:

NC = Not Calculated. Analyte was not detected in wastewater in any event, so the calculation is not possible.

ND = Not Detected in at least one event. No ND indicates the chemical was detected in reclaimed water in all four sampling event..

Negative values indicate that the value in reclaimed water was greater than in wastewater.

- At both facilities, higher detections of residual chemicals were observed in both
 wastewater and reclaimed water in Event 1, as compared with the other events. This
 observation may be linked with biological nutrient removal operation at the BIRWP and
 by temperature at the MWRWP.
 - At the BIRWP, for residual chemicals that were detected in Event 1 as well as in at least one additional event, concentrations in reclaimed water were often higher in Event 1, and removal efficiencies lower, as compared to subsequent events. These results may correlate with the BITP biological nutrient removal (BNR) process being in full operation during Events 2 to 4. By contrast, the plant was not in full denitrifying mode during Event 1. As suggested by other studies, BNR increases residual chemical removal efficiency, largely due to the longer solids

- retention times (SRTS) associated with such processes. Longer SRTs provide more time for microbial degradation processes to occur, and support slower-growing microorganisms that may preferentially metabolize or co-metabolize residual chemicals (Stephenson 2007, Lubliner 2010).
- At the MWRWP, raw wastewater temperatures were higher in Rounds 2 to 4 as compared to Round 1 (i.e., 17.2-19.2°C versus 14.3°C). It is possible that the fewer detections observed at the MWRWP during times of higher temperatures were a result of greater biological activity and increased removal. Such a correlation cannot be made at the BITP/BIRWP, where wastewater temperatures were consistent during Events 1 and 2, and then higher during Events 3 and 4. Concentrations of residual chemicals observed in all events at the MWRWP were relatively consistent, unlike at the BIRWP where Event 1 concentrations were higher in many cases (as noted above).
- The residual chemicals detected at the highest concentrations in LOTT's reclaimed water in all events at both facilities are the artificial sweeteners sucralose and acesulfame-K, the solvent 1,4-dioxane, the anti-diabetic medication metformin, and the x-ray contrast agent iohexal.
- The residual chemicals consistently present in reclaimed water at both facilities, and for which LOTT's treatment processes had removal efficiencies less than the frequently used industry benchmark of 80%¹ (i.e., those that appear to be the most recalcitrant through LOTT's treatment processes) are listed below. These include select pharmaceuticals, multiple x-ray contrast agents, and multiple flame retardants.
 - o 1,4-Dioxane
 - o Carbamazepine
 - Fluoxetine
 - lohexal
 - o lopromide
 - o Lopressor
 - o Primidone
 - o Sucralose
 - o TCEP
 - o TCPP
- Residual chemicals that were consistently present in reclaimed water, (but for which LOTT's treatment processes had removal efficiencies greater than 80%) are:
 - Acesulfame-K
 - o Atenolol

¹ Or for which removal efficiencies could not be calculated due to raw wastewater concentrations reported as being lower than in reclaimed water.

- o Cotinine
- Metformin
- The quality of BITP secondary effluent is consistent with that of BIRWP reclaimed water, particularly with respect to residual chemicals. For those chemicals that are present in both waters, concentrations are typically similar, suggesting that the majority of residual chemical removal is occurring in the BITP treatment processes, with little additional removal occurring in the filtration and chlorine disinfection steps added at the BIRWP. Three chemicals are exceptions to this general finding. For gemfibrozil, sulfamethoxazole, and trimethoprim, concentrations in reclaimed water were notably less than those in secondary effluent. There is no conclusive reason for these differences. Three mechanisms that could potentially contribute to the differences are:

 the additional time involved with the filtration/disinfection treatment processes associated with the reclaimed water provides more time for biodegradation to occur;
 the filtration process removes colloidal organic matter to which these compounds are bound; and
 chlorination oxidizes the compounds. Of these three mechanisms, it is most likely that the first two contribute most significantly to the observed differences, given the nature of these compounds
- The Hawks Prairie wetland ponds reduce the total organic carbon and nitrogen content in reclaimed water before it is infiltrated through the recharge basins, but have a minimal impact on the concentrations of residual chemicals. Of the 16 residual chemicals detected in MWRWP reclaimed water during all four events, most demonstrated no appreciable changes or trends in observed concentrations between the pre- and post-wetlands samples. However, it is noted that the pre- and post-wetlands grab samples were obtained typically within the space of one hour and were not timed to reflect sampling of the same aliquot of water as it traveled through the wetlands (i.e., the sampling does not directly take into account the approximately 20 day residence time in the wetlands). However, this sampling protocol is considered adequate to provide a general characterization of water quality before and after the time spent in the wetlands on a given day.

6.2 Comparison with Other Studies of Residual Chemicals

Table 6-3 provides a high-level summary comparison of the results from this characterization effort with results from other studies that have evaluated the occurrence of residual chemicals in treated wastewater and reclaimed water. The concentrations of many of the residual chemicals that were consistently observed in LOTT's reclaimed water fall within the range of concentrations reported for other treatment facilities. This comparison is general in nature, as there are differences in the treatment processes employed by the facilities considered in the literature.

The following are specific observations:

 The concentrations of the following chemicals were lower in LOTT's reclaimed water than in other reported treated wastewater and reclaimed water:

- Acesulfame-K
- Atenolol
- o lopromide
- Lopressor
- o TCEP
- o TDCPP
- The concentrations of the following chemicals were higher in LOTT's reclaimed water than in other reported treated wastewater and reclaimed water:
 - o lohexal
 - Sucralose
- For the chemicals of comparison where percent removal data were available in the literature, LOTT's removal efficiencies are greater than the literature for three compounds (atenolol, carbamazepine, and lopressor), less than the literature for iohexal, and the same as the literature value for gemfibrozil.
- As noted in Section 6.1, the removal efficiencies of LOTT's facilities are greater than the frequently used industry benchmark of 80% for some chemicals, and lesser than this benchmark for other chemicals. It is noted that in the instances where these data are reported in the cited literature, removal efficiencies are often less than 80%, as shown in Table 6-3. This reflects the focus that many studies have upon chemicals that are known to be recalcitrant to wastewater treatment. For those chemicals with data available for comparison, LOTT's removal efficiencies, while still below the 80% benchmark, were typically greater than those reported in the literature (e.g., for atenolol, carbamazepine, and lopressor).

Table 6-3. Comparison of Concentrations and Removals of Residual Chemicals Detected in Reclaimed Water in all Events at Either BIRWP and MWRWP with Other Studies

	Study Res (BIRWP/MW		Literature V	/alues	
Detected Chemical	Range of Concentration (ng/L)	Average % Removal	Range of Concentration (ng/L)	Average % Removal	Literature Sources ⁽¹⁾
1,4-Dioxane	390-730	(neg)			
Acesulfame-K	23-13,000	93	20,000		f
Atenolol	36-230	91	260-2,440	61	a,b,c,d,e,f,g,h
Butalbital ⁽²⁾	7.3-11	28			
Carbamazepine	190-330	33	97-1,600	22	a-i
Cotinine	13-130	99	ND-340		d,f,g,i
Fluoxetine	31-65	50	8-78		c,d,f,h,i
Gemfibrozil ⁽³⁾	12-710	77	ND-1,640	77	a-i
Iohexal	240-14,000	59	41-4,780	89	a,f,g
Iopromide	9.1-510	(neg)	2,700	69	a,e
Lopressor	150-290	52	340-3,900	32	a,c,d,f,g
Meprobamate ⁽³⁾	22-52	14-28	31-1,420		b,d,e,f,g,h
Metformin	31-2,600	99	542-82,700		d,i
Primidone	64-200	38	90-159		e,f,g
Sucralose	18,000-68,000	50	27,000		f,g
TCEP	39-200	(neg)	200-1,400		e,f,g,i
TCPP	200-740	67	224-7,200		b,e,f
TDCPP ⁽³⁾	210-310	-41-53	500		f
Perfluoro-n-hexanoic acid ⁽²⁾	18-81	(neg)	15-53		d

Notes:

(neg) = Negative percent removal values, because analyte was either not detected in wastewater, or the value in reclaimed water was greater than that in wastewater. See Table 6-2 for values.

- -- = Not Found in Reviewed Literature
- (1) Literature values were obtained from the following sources:
 - (a) EPA (2010). Data from 33 treatment plants.
 - (b) Ohlinger, et al (2013). Data from one plant.
 - (c) Kostich, et al (2014). Data from 50 treatment plants.
 - (d) Meador, et al (2016). Data from two treatment plants.
 - (e) Laws, et al (2011). Data from one treatment plant.
 - (f) Benskin (2016). Data from one treatment plant.
 - (g) Oppenheimer, et al (2010). Data from treatment plants in five states.
 - (h) Johnson, et al (2012). Data from three treatment plants, including LOTT.
 - (i) Lubliner, et al (2010). Data from three treatment plants, including LOTT.
- (2) Detected in all four events at the MWRWP, not at the BIRWP.
- (3) Detected in all four events at the BIRWP, not at the MWRWP.

7.0 Conclusions

This effort provides a comprehensive characterization of the reclaimed water produced by LOTT at BIRWP and MWRWP. With respect to the Study's focus area of residual chemicals, LOTT's facilities exhibited good removals of many residual chemicals detected in raw wastewater. Of the 127 total residual chemicals analyzed for, 14 were consistently observed in all sampling events at both facilities.

These data will provide input and focus for future analyses associated with the RWIS, including the human health and ecological risk assessment (Task 3) and the evaluation of alternative treatment processes and related cost/benefit analysis (Task 4).

8.0 References

- Benskin, P. 2016. Personal communication. Email summary of data for City of Aurora, CO Prairie Waters project (12/18/2012 CEC Sampling of N. Campus and SP Train of BWPF).
- Guo, Y., S. Fitzsimmons, G. Woodside, N. Yamachika. 2010. Source, Fate, and Transport of Endocrine Disruptors, Pharmaceuticals, and Personal Care Products in Drinking Water Sources in California. National Water Research Institute. (NWRI 2010-02).
- HDR Engineering, Inc. (HDR). 2013. Technical Memorandum "State of the Science". LOTT Clean Water Alliance Reclaimed Water Infiltration Study. Phase 1 (Technical Data Review).
- HDR Engineering, Inc. (HDR). 2015. Work Plan Task 1.3 Wastewater and Reclaimed Water Water Quality Characterization. LOTT Reclaimed Water Infiltration Study Phase III.
- Johnson, Art., Marti, Pam. 2012. Draft- Pharmaceuticals, Personal Care Products, Hormones, and Sterols Detected in Process Water and Groundwater at Three Reclaimed Water Treatment Facilities in Washington. Washington State Department of Ecology, Olympia, Washington. Publication Number 12-03-0xx. June 2012.
- Kostich, M., A. Batt, J. Lazorchak. 2014. Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environmental Pollution 184 (2014) 354-359.
- Laws, B.V., Dickenson, E.R.V., Johnson, T.A., Snyder, S.A., Drewes, J.E. (2011). *Attenuation of contaminants of emerging concern during surface-spreading aquifer recharge*. Science of the Total Environment 409, 1087–1094.
- LOTT. 2015. Flows and Loadings Report.
- Lubliner, B., M. Redding, and D. Ragsdale. 2010. *Pharmaceuticals and Personal Care Products in Municipal Wastewater and Their Removal by Nutrient Treatment Technologies*. Washington State Department of Ecology, Olympia, Washington. Publication Number 10-03-004.
- Meador, J., A. Yeh, G. Young, E. Gallagher. 2016. *Contaminants of emerging concern in a large temperate estuary*. Environmental Pollution 213 (2016) 254-267.
- Miège, C., J.M. Choubert, L. Ribeiro, M. Eusèbe, and M. Coquery, 2008. Removal efficiency of pharmaceuticals and personal care products with varying wastewater treatment processes and operating conditions conception of a database and first results. Water Science and Technology. Vol 57.1.
- National Research Council (NRC). 2012. Water Reuse: Potential for Expanding the Nation's Water Supply Through Reuse of Municipal Wastewater. The National Academies Press: Washington D.C.

- Ohlinger, K., C. De Las Casas, R. Merlo, S. Snyder. 2013. *Holistic Assessment of Trace Organic Compounds in Wastewater Treatment*. Water Environment Research Foundation (WERF) and IWA Publishing.
- Oppenheimer, J., A. Eaton, M. Badruzzaman, A. Haghani, J. Jacangelo. 2011. *Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions*. Water Research 45 (2011) 4019-4027.
- Snyder, S., S. Adham, A. Redding, F. Cannon, J. DeCarolis, J. Oppenheimer, E. Wert, and Y. Yoon. 2007. Role of Membranes and Activated Carbon in the Removal of Endocrine Disruptors and Pharmaceuticals. Desalination, Vol. 202. .
- Stephenson, R., J. Oppenheimer. 2007. Fate of Pharmaceuticals and Personal Care Products through Municipal Wastewater Treatment Processes. Water Environment Research Foundation (WERF) and IWA Publishing.
- U.S. Environmental Protection Agency (EPA). 2010. *Treating Contaminants of Emerging Concern: A Literature Review Database*. EPA-820-R-10-002. Environmental Protection Agency. Washington, D.C
- U.S. Environmental Protection Agency (EPA). 2012. *Guidelines for Water Reuse*. 600/R-12/618. Environmental Protection Agency. Washington, D.C.
- Washington State Departments of Ecology and Health (Ecology/Health). 1997. Water Reclamation and Reuse Standards.
- Washington State Departments of Ecology and Health (Ecology/Health). 2011. Reclaimed Water Permit Number ST 6206 (Martin Way Treatment Plant and Hawks Prairie Recharge Basins), issued for LOTT Clean Water Alliance.
- Washington State Departments of Ecology and Health (Ecology/Health). 2011. National Pollutant Discharge Elimination System Waste Discharge and Reclaimed Water Permit No. WA0037061, issued for LOTT Clean Water Alliance and the Contributing Jurisdictions City of Lacey, City of Olympia, City of Tumwater, Thurston County.

Appendix A Residual Chemical Analyte List

February 7, 2017

This page intentionally left blank.

Residual Chemical	Compound Class	Parameter	Compound Class
1,7-dimethylxanthine	Caffeine Degradate	Ibuprofen	Analgesic-NSAID
2,4-D	Herbicide	Iohexol (Iohexal)	X-ray Contrast agent
4-nonylphenol	Surfactant	Iopromide	X-ray Contrast agent
4-tert-octylphenol	Surfactant	Isobutylparaben	Preservative
Acesulfame-K	Sugar Substitute	Isoproturon	Herbicide
Acetaminophen	Analgesic	Ketoprofen	Anti Inflammatory
Albuterol	Anti Asthmatic	Ketorolac	Anti Inflammatory
Amoxicillin	Antibiotic	Lidocaine	Analgesic
Andorostenedione	Steroid Hormone	Lincomycin	Antibiotic
Atenolol	Beta Blocker	Linuron	Herbicide
Atrazine	Triazine Herbicide	Lopressor	Beta Blocker
Azithromycin	Antibiotic	Meclofenamic Acid	Anti Inflammatory
Bendroflumethiazide	Triazide	Meprobamate	Anti Anxiety
Bezafibrate	Lipid Regulator	Metformin	Antidiabetic
BPA (Bis Phenol A)	Plasticizer	Metazachlor	Herbicide
Bromacil	Herbicide	Methylparaben	Preservative
Butalbital	Analgesic-NSAID	Naproxen	Analgesic-NSAID
Butylparben	Preservative	Nifedipine	Calcium Blocker
Caffeine	Stimulant	Norethisterone	Steroid Hormone
Carbadox	Antibiotic	OUST (sulfameturon methyl)	Herbicide
Carbamazepine	Anti Seizure	Oxolinic acid	Antibiotic
Carisoprodol	Muscle Relaxant	Pentoxifylline	Blood thinner
Chloramphenicol	Antibiotic	Phenazone	analgesic
Chloridazon	Herbicide	Primidone	Anti Convulsant
Chlorotoluron	Herbicide	Progesterone	Steroid Hormone
Cimetidine	H2 Blocker	Propazine	Triazine Herbicide
Clofibric Acid	Herbicide/ Cholestrol drug	Propylparaben	Preservative
Cotinine	Nicotine Degradate	Quinoline	Pesticide/Ind Chem
Cyanazine	Triazine Herbicide	Simazine	Triazine Herbicide
DACT (Diaminochlorotriazine)	Triazine Degradate	Sucralose	Sugar Substitute
DEA (Deethylatrazine)	Triazine Degradate	Sulfachloropyridazine	Sulfa Antibiotic
DEET (N,N-Diethyl- meta-toluamide)	Mosquito Repellant	Sulfadiazine	Sulfa Antibiotic
Dehydronifedipine	Blood Pressure Drug Metabolite	Sulfadimethoxine	Sulfa Antibiotic
DIA (Deisopropylatrazine)	Triazine Degradate	Sulfamerazine	Sulfa Antibiotic
Diazepam	Valium- Antianxiety	Sulfamethazine	Sulfa Antibiotic
Diclofenac	Anti-Inflammatory	Sulfamethizole	Sulfa Antibiotic
Dilantin	Anti-Seizure	Sulfamethoxazole	Sulfa Antibiotic

Residual Chemical	Residual Chemical Compound Class		Compound Class
Diltiazem	Vasodilator	Sulfathiazole	Sulfa Antibiotic
Diuron	Herbicide	TCEP	Flame Retardant
E2 (17 Beta-Estradiol)	Estrogenic Hormone	TCPP	Flame Retardant
EE2 (17 Alpha- ethynylestradiol)	Contraceptive Hormone	TDCPP	Flame Retardant
Erythromycin	Antibiotic	Testosterone	Steroid Hormone
Estradiol	Estrogenic Horomone	Theobromine	Caffeine Degradate
Estrone	Estrogenic Hormone	Theophylline	Anti Asthmatic
Ethinyl Estradiol - 17 alpha	Estrogenic Hormone	Thiabendazole	Antihelminthic
Ethylparaben	Preservative	Triclocarban	Antibacterial
Flumeqine	Antibiotic	Triclosan	Antibacterial
Fluoxetine	Antidepressant	Trimethoprim	Antibiotic
Furosemide	Diuretic	Warfarin	Anticoagulant
Gemfibrozil	Lipid Regulator		

Appendix B

Tabular Summary of Wastewater/Reclaimed Water Monitoring Results

February 7, 2017

This page intentionally left blank.

				Budd Inlet Reclaimed Water Plant (BIRWP)						
				Sampling Event 1 (11/13/2014)		,	Sampling Event 2 (02/18/2015)			
				BIRWP-WASTEWATE	ER BIRWP-SECONDARY	BIRWP-RECLAIMED	BIRWP-WASTEWATER	BIRWP-SECONDARY	BIRWP - RECLAIMED	
ANALYTE FIELD PARAMETERS	METHOD	UNIT	MRL	Result Q	Qual Result Qu	ual Result Qu	al Result Qual	Result Qual	Result Qu	
pH Temperature		units °C	N/A N/A	7.42 13.9	7.01 16.7	7.16 17.1	7.26 13.1	5.40 15.2	7.10 15.3	
Specific Conductance Oxidation Reduction Potential (ORP)		μS/cm mV	N/A N/A	706.0 -15.6 1.40	537.4 288.4 6.82	544.2 453.1 7.20	628.6 273.3 3.83	461.1 485.2 5.78	479.7 687.2 8.37	
Dissolved Oxygen Free Cl Total Cl		mg/L mg/L mg/L	N/A N/A N/A	0.0	0.0	2.0	0.0	0.0	0.6 1.6	
LABORATORY GENERAL WATER QUALITY PAR Alkalinity	SM 2320B	mg/L	2	220	98	99	190	-	92	
Alkalinity (as HCO3, calc) Carbonate	SM2330B SM2330B	mg/L mg/L	2 2	280 ND	-	120 ND	230 ND	-	110 ND	
Hydroxide Carbon Dioxide	SM2330B SM4500-CO2-D	mg/L mg/L	2	ND ND		ND ND	ND ND	-	ND 7.2	
Specific Conductance Turbidity	SM2510B Default	umho/cm NTU	0	710 0.99	540	540 0.99	0.99	-	470 0.99	
WASTEWATER/RECLAIMED WATER PARAMET Total Suspended Solids Total Dissolved Solid	SM 2540D E160.1/SM2540C	mg/L mg/L	10 10	260 320	ND 330	ND 310	180 280	-	ND 290	
Total Organic Carbon Chemical Oxygen Demand	SM5310C/E415.3 EPA 410.4	mg/L mg/L	0.3	81 300	6.7 19	5.4 13	110 550		12 12	
Dissolved Organic Carbon - Final Dissolved Organic Carbon - Initial	Allgeier, 1996 Allgeier, 1996	mg/L mg/L	0.3 0.3	26 51	6.1 5.5 J		28	-	7 7.9	
Biochemical Oxygen Demand Biodegradable Dissolved Organic Carbon	SM5210B 405.1 Allgeier, 1996	mg/L mg/L	3 0.3	25	J ND ND	5 0.7 J+		-	ND ND (<3)	
Bromide Chloride	EPA 300.0 EPA 300.0	ug/L mg/L	5 1	66 40	170 62	150 66	64 32		70 60	
Fluoride Sulfate SulfideTotal	SM 4500F-C EPA 300.0 SM4500SD/376.2	mg/L mg/L mg/L	0.05 0.5 0.05	0.37 23 0.32	0.26 24 ND	0.23 24 ND	0.29 17 0.3	-	0.19 23 ND	
Sulfur Total ICAP Total Hardness as CaCO3 by ICP (calc)	EPA 200.7 SM 2340B	mg/L mg/L	0.1	570 100	-		290 94			
Total Chlorine Free Chlorine	SM 4500-CL G SM 4500CL-G/HACH	mg/L mg/L	0.1 0.1	ND ND	ND ND	2.2 J- 0.14 J-	ND	-	0.58 J ND	
Chloramines Anion Sum - Calculated	SM 4500CL-G/HACH SM 1030E	mg/L meq/L	0.1 0.001	ND I	UJ ND U	// 2.1 J-	5		0.53 J 4.2	
Cation Sum - Calculated Cation Sum - Manual Calculation	SM 1030E SM 1030E	meq/L %	0.001		-		4.2	-		
Cation/Anion Difference Cation Balance with NH3	SM 1030E	% meq/L	0	-	-	-	13 6.5	-	=	
PATHOGENS Total Coliform Fecal Coliform	SM 9222B SM 9222D	MPN/100 mL MPN/100 mL	1 1	>241960	J 4.1 J	J 9.5 J		-	ND ND	
Fecal Coliform Cryptosporidium	SM 9222D SM 9222D EPA 1623	CFU/mL oocysts/L	1 NA	>241960 1524.39	J	<1 J	>2419600 J	-		
Giardia Somatic coliphage titer	EPA 1623 FR59#28 1602	Organism/L P/100mL	NA 1	13719.512 210000	<1	9.524 <1	40000	-	 <1	
Male-specific coliphage titer NUTRIENTS	FR59#28 1602	P/100mL	1	160000	<1	<1	28000	-	<1	
Nitrate (as Nitrogen) Nitrite	EPA 300.0 EPA 300.0	mg/L mg/L	0.1 0.05	ND (<0.2) ND (<0.1)	4.7 ND (<0.1)	4.6 ND (<0.1)	ND (<0.2) ND (<0.1)	-	2.7 ND	
Nitrate+Nitrite Ammonia Nitrogen	EPA 300.0 EPA 350.1	mg/L mg/L	0.1 0.05	ND (<0.2) 34	4.7 1.9	4.6 2.9 J		-	2.7 0.052	
Kjeldahl Nitrogen Total Nitrogen Dissolved Orthophosphate (as P)	EPA 351.2 EPA 353-351 45009-E/365.1	mg/L mg/L	0.2	51 51	3.4 8.1	4.1 8.7	50 50	-	1.1 3.8	
Dissolved Orthophosphate (as P) Dissolved Total Phosphorus Orthophosphate (as P)	4500P-E/365.1 SM4500-PE/EPA 365.1 4500P-E/365.1	mg/L mg/L mg/L	0.01 0.4 0.01	3.7 4.3 4.4	5.2 5.4 4.8	4.4 4.7 4.8	3.2 3.8 J+ 3.5		2.8 3 2.9	
Total Phosphorus METALS (DISSOLVED)	SM4500-PE/EPA 365.1	mg/L	0.01	8.2	5.2	4.6	6.8	-	3.1	
Aluminum Antimony	EPA 200.8 EPA 200.8	ug/L ug/L	20	50 ND	ND ND	ND ND	31 ND		ND ND	
Arsenic Barium	EPA 200.8 EPA 200.8	ug/L ug/L	1 2	1 5.6	1.4	1.6 4.5	1 5.8		1 4.2	
Beryllium Boron	EPA 200.8 EPA 200.7	ug/L mg/L	1 0.05	ND 0.11	ND 0.16	ND 0.15	ND 0.1		ND 0.14	
Cadmium Calcium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5 1	ND 21	ND 23	ND 23	ND 17		ND 18	
Chromium Copper	EPA 200.8 EPA 200.8	ug/L ug/L	2	ND 19	ND 4.8	7.6	ND 22		ND 7.5	
lron Lead	EPA 200.7 EPA 200.8	mg/L ug/L	0.02	ND ND	0.054 ND	0.02 ND	0.17 ND		0.022 ND	
Magnesium Manganese	EPA 200.7 EPA 200.8	mg/L ug/L	0.1	8 65 ND	10 62 ND	5.4	8 62	-	8.1 ND ND	
Mercury Potassium Seleniun	EPA 245.1 EPA 200.7 EPA 200.8	ug/L mg/L ug/L	0.2 1	13 ND	15 ND	14 ND	ND 11 36	-	11 ND	
Silica Silicon	EPA 200.7 EPA 200.7	mg/L mg/L	0.5	35 16	37 17	37 17	35 16	-	32 15	
Silver Sodium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5	ND 42	ND 57	ND 59	ND 41		ND 48	
Thallium Zinc	EPA 200.8 EPA 200.8	ug/L ug/L	1 20	ND 20	ND 49	ND 43	ND 36	-	ND 47	
METALS (TOTAL) Aluminum	EPA 200.8	ug/L	20	640	-		390	-		
Antimony Arsenic	EPA 200.8 EPA 200.8	ug/L ug/L	1	ND 1.4	-		ND ND	-		
Barium Beryllium	EPA 200.8 EPA 200.8	ug/L ug/L	1	26 ND	-		18 ND	-		
Boron Cadmium Calcium	EPA 200.7 EPA 200.8 EPA 200.7	mg/L ug/L mg/L	0.05 0.5	0.12 ND 27			0.12 ND 22	-		
Chromium Copper	EPA 200.8 EPA 200.8	ug/L ug/L	1 2	1.2			ND 76			
Iron Lead	EPA 200.7 EPA 200.8	mg/L ug/L	0.02 0.5	0.67 1.2			0.59 1.2	-		
Magnesium Manganese	EPA 200.7 EPA 200.8	mg/L ug/L	0.1	9 84			9.5 92	-		
Mercury Nickel	EPA 245.1 EPA 200.8	ug/L ug/L	0.2 5	ND ND		-	ND ND	-		
Potassium Selenium	EPA 200.7 EPA 200.8	mg/L ug/L	5	13 ND		-	13 ND			
Silica Silver Sodium	EPA 200.7 EPA 200.8 EPA 200.7	mg/L ug/L	0.5 0.5	38 0.57 47		-	37 0.72 47	-		
Thallium Zinc	EPA 200.8 EPA 200.8	mg/L ug/L ug/L	1 20	ND	J+		ND 120			
RESIDUAL CHEMICALS N-Nitroso dimethylamine (NDMA)	EPA 521	ng/L	2	5.1	-	4.5	ND UJ	T	ND	
1,4-Dioxane 1,7-Dimethylxanthine	EPA 522 LC-MS-MS	ug/L ng/L	0.07 10	0.36 ND		0.43 ND	0.36 830	 ND	0.39 ND	
2,4-D (Method LC-MS-MS) 4-n-Octylphenol diethoxylate	LC-MS-MS LC-MS-MS-WW	ng/L ng/L	5 100	ND 120		ND ND	ND ND	ND	ND ND	
4-n-Octylphenol monoethoxylate 4-nonylphenol - semi quantitative	LC-MS-MS-WW LC-MS-MS	ng/L ng/L	100 100		J	ND 1100 J	ND 790 J	 1700 J	ND U	
4-para-Nonylphenol 4-tert-octylphenol Acesulfame-K	LC-MS-MS-WW LC-MS-MS	ng/L ng/L	100 50 20	ND 20000		240 ND 1300	110	84 13000	ND 13000	
Acesulfame-K Acetaminophen Albuterol	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5 5	42000 10		1300 ND 5.8	60000 210000 26	ND 14	ND ND	
Amoxicillin (semi-quantitative) Andorostenedione	LC-MS-MS LC-MS-MS	ng/L ng/L	20		J -	ND U.		22000 J ND	ND U	
Atenolol Atrazine (Method LC-MS-MS)	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	650 ND	-	180 ND	2800 ND	180 ND	230 ND	
Azithromycin Bendroflumethiazide	LC-MS-MS LC-MS-MS	ng/L ng/L	20 5	ND		ND	 ND	 ND	 ND	
Bezafibrate Bisphenol A	LC-MS-MS LC-MS-MS-WW	ng/L ng/L	5 100	ND 		ND 	ND 	ND	ND 	
BPA (Bisphenol A, low detection limit) Bromacil (Method LC-MS-MS)	LC-MS-MS LC-MS-MS	ng/L ng/L	10 5	ND 14		ND ND	ND ND	ND ND	ND ND	
Butulnarhen	LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5 5 5	5.5 6.5 53000		ND ND ND	ND 69 280000	ND ND 12	ND ND ND	
		ng/L ng/L	5 5	40 230		ND ND 220	ND 370	ND 270	ND ND 280	
Caffeine Carbadox	LC-MS-MS LC-MS-MS LC-MS-MS		5	5	-	8.3 ND	13 ND	18 ND	21 ND	
Caffeine Carbadox Carbamazepine Carisoprodol	LC-MS-MS	ng/L ng/L ng/L	5	ND				ND	24	
Caffeine Carbadox Carbamazepine Carisoprodol Chloridazon Chloramphenicol Chlorotoburon	LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L ng/L ng/L	5 10 5	ND ND	-	ND ND	ND ND	ND	ND	
Caffeine Carbadox Carbamzepine Carisoprodol Chlordazon Chloramphenicol Chlorotoluron Cimetidine Clofibric Acid	LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5	ND ND 250 ND	J	ND ND U.	ND 1 160 J ND	ND 40 J ND	ND U ND	
Caffeine Carbadox Carbamazepine Carisoprodol Chlordazon Chloramphenicol Chlorotoluron Cinetidine Clofbirc Acid Cotinine	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 10 5	ND ND 250 ND 1400 ND	J J 	ND	ND 160 J ND 3800 ND	ND J ND Z1 ND	ND U ND 21 ND	
Caffeine Carbadox Carbamazepine Carisoprodol Chloridazon Chloramphenicol Chlorotoluron Climetidine Clofibir, Acid Cottinine Cyanazine DACT DEA	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 5 10 5 5	ND ND 250 ND 1400 ND ND	 J 	ND	ND 160 J ND 3800 ND ND ND ND ND	ND 40 J ND 21 ND ND ND ND ND	ND U ND 21 ND ND ND ND ND	
Caffeine Carbadox Carbamazepine Carisoprodol Chloridazon Chloramphenicol Chlorotoluron Cimetidine Clofibric Acid Cottinine Cyanazine DACT DEA DEET DEHydronifedipine	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 10 5 5 5 10 5 5 5	ND ND 250 ND 1400 ND	- J	ND U. ND U. ND 17 ND	ND 160 J ND ND ND ND ND ND ND	ND 40 J ND 21 ND	ND U ND 21 ND	
Caffeine Carbadox Carbamazepine Carisoprodol Chloridazon Chloramphenicol Chlorotoluron Cimetidine Clofibric Acid Cotinine Cyanazine DACT DEA DEET Dehydronifedipine DIA Diazepam	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 5 10 5 5 5 5 10 5 5 5 5 5 5 5	ND ND 1400 ND		ND	ND 160	ND 40 J ND 21 ND	ND	
Caffeine Carbadox Carbamazepine Carisoprodol Chloridazon Chloramphenicol Chlorotoluron Cimetidine Clofibric Acid Cotinine Cyanazine DACT DEA DEE Dehydronifedipine DIIA Diazepam Diclofenac Diluron	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 10 5 5 5 10 5 5 5 5 5 5 5 5 5	ND ND 1400 ND		ND	ND 160	N/D	ND	
Caffeine Carbadox Carbamazepine Carisoprodol Chlorotaluron Chlorotaluron Clofleric Acid Cottinine Cyanazine DACT DEF DEF DEF DEH DIA Diazepam Dilazepam Dilazepam Dilazepam Dilazepam Dilazen Dilazen Dilazen Dilazen Dilazen	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 10 5 5 5 10 5 5 5 5 5 10 5 5 5 5	ND ND ND 1400 ND		ND	ND J ND SB00 ND N	ND 40 J ND 21 ND	ND	
Butylapraben Carfeine Carbadox Carbamazepine Carisoprodol Chloridazon Chloridazon Chloramphenicol Chlorotoluron Cimetidine Clofibric Acid Cottinine Cyanazine DACT DEA DEET Dehydronifedipine DIA Diazepam Diclofenac Diuron Dilantin Diltazem Erythromycin Estradiol - 17 beta	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5	ND ND 1400 ND		ND	ND J 160 J ND N	ND 40 J ND 21 ND N	ND	
Caffeine Carbadox Carbamazepine Carisoprodol Chloramphenicol Chlorotoluron Cimetidine Clofibric Acid Cottinine Cyanazine DACT DEA DEET DeHydronifedipine DIA Diazepam Diclofenac Diuron Dillatire Dillatire Estradiol - 17 beta Estradiol - 17 beta Estradiol - 19 beta [sextone]	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 5 10 5 5 5 5 10 5 5 5 5 5 5 5	ND ND 120 ND 150 62 230		ND	ND J 160 J ND 3800 ND N	ND 40 J ND 21 ND	NID U NID U NID 1 1 1 1 1 1 1 1 1	
Caffeine Carbadox Carbadox Carbamazepine Carisoprodol Chloridazon Chloramphenicol Chlorotoluron Cimetidine Clofibric Acid Cotinine Cyanazine DACT DEA DEET Dehydronifedipine DIA Diazepam Diclofenac Diuron Dilantin Diltiazem Erythromycin Estradiol - 17 beta	LC-MS-MS	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND ND 250 ND 1400 ND	J	ND	ND J 160 J ND 3800 ND N	ND 40 J ND 21 ND N	ND	

MAYTER M67HOD MNT MML Result Qual Q	SECONDARY uit Qual 3 SECONDARY uit Qual 3 SECONDARY 00000 00000 00000 00000 00000 00000 0000	Result
MAYATE	uit Qual 3 3 100 100 100 100 100 100 100 100 100	Result
Placenteries	3 3 600 600 600 600 600 600 600 600 600	\$4 40 ND 12000 43 ND 12000 43 ND
Semillarian	100 100 100 100 100 100 100 100 100 100	40 40 40 MD 12000 43 MD MD MD MD MD MD MD MD MD M
onlocal CAMS-MS reg/L 10 8400 5000 15000 14 4 obsorypaturben C. MS-MS reg/L 5 14 15 14 24 obsorpharum C. MS-MS reg/L 100 NO NO 66 17 obsorpharum C. MS-MS reg/L 100 NO NO 66 17 obsorpharum C. MS-MS reg/L 15 120 100 NO NO 20 20 obsorpharum C. MS-MS reg/L 5 120 NO NO 70 32 discourse C. MS-MS reg/L 3 NO NO NO NO 30 discourse C. MS-MS reg/L 3 20 NO NO <td>000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>12000 43 ND ND</td>	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12000 43 ND
Loss-Mark CAS-Mark mg/L S NO	D D D D D D D D D D D D D D D D D D D	ND N
Acceptance CASH-MS right S NO	D D D D D D D D D D D D D D D D D D D	ND N
Lidocane	100	ND N
Linuton	D	ND ND ND S2 ND
Mocordamina Acid	D	ND S2 ND I I I I I I I I I
Medistachine	D R R R R R R R R R R R R R R R R R R R	ND 31 ND
Methylaparke C.MS-MS	D D D D D D D D D D D D D D D D D D D	ND ND ND ND ND ND ND ND
Medipine	D	ND
Nonythehol Monochhoylate LC-MS-MS-WW ng/L 100 ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND ND 9.2 ND 130 ND ND ND ND ND ND ND ND ND N
CAMS-MS-WW Rg/L 100 ND ND ND ND ND ND ND	D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND 9.2 ND 130 ND
Pentosylline C.MS-MS ng/L S ND	D D D D D D D D D D D D D D D D D D D	ND 130 ND
Primidone LC-MS-MS ng/L 5 300 180 200 122 Progesterone LC-MS-MS ng/L 5 5 ND 130 ND Propazire LC-MS-MS ng/L 5 ND ND ND ND Outrolline LC-MS-MS ng/L 5 180 ND 140 NM Outrolline LC-MS-MS ng/L 5 18 ND 140 NM Signation LC-MS-MS ng/L 5 8.8 ND 140 NM Sidradinare LC-MS-MS ng/L 5 ND ND	D D D D D D D D D D D D D D D D D D D	ND N
Propagine LC-MS-MS ng/L 5 ND ND ND ND ND ND PProphygrate Cuinoline LC-MS-MS ng/L 5 18 ND 140 NM Guinoline LC-MS-MS ng/L 5 18 ND 140 NM Suracilose LC-MS-MS ng/L 100 63000 ND ND ND Surfacilose LC-MS-MS ng/L 5 ND ND ND ND ND Surfacilose LC-MS-MS ng/L 5 ND ND	D D D D D D D D D D D D D D D D D D D	ND ND ND 26000 ND
Simazine (Method LC-MS-MS) LC-MS-MS ng/L 5 8.8 5.2 MD MI	D D D D D D D D D D D D D D D D D D D	ND 26000 ND
Sulfachioropyridazine LCMS-MS ng/L 5 N/D N/D N/	D D D D D D D D D D D D D D D D D D D	ND N
Sulfamerboxine LC-MS-MS ng/L 5 N/D N/D N/	D D D D D D D D D D D D D D D D D D D	ND ND ND ND ND ND
Sulfamethazine LCMS-MS ng/L 5 7 ND ND ND Sulfamethizole LC-MS-MS ng/L 5 6.2 ND	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	ND ND ND ND
Sulfamethizole LC-MS-MS ng/L 5 6.2 ND ND ND Sulfamethoxazole LC-MS-MS ng/L 5 3000 240 1000 339 Sulfathiazole LC-MS-MS ng/L 10 33 ND	00 00 00 00 00 00 00 00 00 00	ND ND
Sulfathizole LC-MS-MS ng/L 5 ND ND ND NM	00 00 00 00 00 00 00 00 00	
TCPP LC-MS-MS ng/L 100 460 580 710 63 TDCPP LC-MS-MS ng/L 100 160 220 130 220 Theobromine LC-MS-MS ng/L 5 72 113 32000 11 Thiobandazole LC-MS-MS ng/L 5 72 15 ND ND ND Triclocarban LC-MS-MS ng/L 5 17 ND 120 NM Trindechapin LC-MS-MS ng/L 5 ND ND 120 NM Trimethoprim LC-MS-MS ng/L 5 260 97 410 23 Warfarin LC-MS-MS ng/L 5 ND ND 14 NM PerSc Perfluor Dutanoic acid-PFBA MWH PFC ng/L 5 ND ND 25 Perfluor obtanesidfona	00 00 00 00 00 00 00	
Theobromine	D D D 3	740 220
Testosterone LC-MS-MS ng/L 5 17 ND ND NL Triclocarban LC-MS-MS ng/L 5 ND ND 120 NL Triclocarban LC-MS-MS ng/L 10 420 19 920 77 Trimethoprim LC-MS-MS ng/L 5 260 97 410 23 Warfarin LC-MS-MS ng/L 5 ND ND 14 ND PEFL Perfluoro butanoic acid-PFBA MWH PFC ng/L 5 ND ND 25 Perfluoro octanesulfonate-PFOS MWH PFC ng/L 5 ND ND ND Perfluoro octanesulfonate-PFOS MWH PFC ng/L 5 ND ND ND Perfluoro octanesulfonate acid -PFOS MWH PFC ng/L 5 ND ND	3	ND ND
Triclosan		6.6 ND
Warfarin LC-MS-MS ng/L 5 ND ND 14 ND PEC Perfluor obtanoic acid-PFBA MWH PFC ng/L 10 ND ND 25 Perfluor obtanoic acid-PFOS MWH PFC ng/L 5 ND ND ND Perfluor obtanoic acid -PFOA MWH PFC ng/L 5 ND 7.4 J ND Perfluor-1-butanesulfonic acid MWH PFC ng/L 5 ND ND ND Perfluor-1-butanesulfonic acid MWH PFC ng/L 5 ND ND ND Perfluor-1-bexanesulfonic acid MWH PFC ng/L 5 ND ND ND ND Perfluor-1-bexanesulfonic acid MWH PFC ng/L 5 ND ND ND ND Perfluor-1-bexanesulfonic acid MWH		ND ND
Perfluoro octanesulfonate-PFOS MWH PFC ng/L 5 N/D N/D N/D Perfluoro octanesulfonic acid - PFOS MWH PFC ng/L 5 N/D N/D N/D Perfluoro-1-butanesulfonate MWH PFC ng/L 5 N/D N/D N/D Perfluoro-1-butanesulfonate MWH PFC ng/L 5 N/D N/D N/D Perfluoro-1-butanesulfonate MWH PFC ng/L 5 N/D N/D N/D Perfluoro-1-butanesulfonic acid MWH PFC ng/L 5 N/D N/D N/D Perfluoro-1-butanesulfonic acid MWH PFC ng/L 5 N/D N/D N/D N/D Perfluoro-1-butanesulfonic acid MWH PFC ng/L 5 N/D N/D N/D N/D		ND
Perfluoro octanoic acid - PFOA MWH PFC ng/L 5 ND 7.4 J ND Perfluoro-1-butanesulfonate MWH PFC ng/L 5 ND ND ND Perfluoro-1-butanesulfonic acid MWH PFC ng/L 5 ND ND ND ND Perfluoro-1-hexanesulfonic acid MWH PFC ng/L 5 ND ND ND ND Perfluoro-1-hexanesulfonic acid MWH PFC ng/L 5 ND ND ND ND		ND ND
Perfluoro-1-butanesulfonic acid MWH PFC ng/L 5 ND ND ND Perfluoro-1-hexanesulfonic acid MWH PFC ng/L 5 ND ND ND ND Perfluoro-1-hexanesulfonic acid MWH PFC ng/L 5 ND ND ND ND	•	ND 5.6
Perfluoro-1-hexanesulfonic acid MWH PFC ng/L 5 ND ND ND		ND ND
	-	ND ND
Perfluoro-n-heptanoic acid MWH PFC ng/L 5 ND ND ND		ND ND
Perfluoro-n-nonanoic acid MWH PFC ng/L 5 ND ND ND ND	-	8.8 ND
PBDEs/EDB/DBCP		
BDE-153 GC-QQQ PBDE ng/L 5 N/D U/ N/D U/		
BDE-154 GC-QQQ PBDE ng/L 5 ND UJ ND UJ ND UJ ND UJ ND UJ ND UJ ND UJ	•	
BDE-28 GC-QQQ PBDE ng/L 5 ND UJ ND BDE-47 GC-QQQ PBDE ng/L 5 ND UJ ND		
Second S	•	
Septembrin		
Total Permethrin GC-QQQ PBDE ng/L 10 24 J- ND trans-Permethrin GC-QQQ PBDE ng/L 5 13 J- ND		==
Dibromochloropropane (DBCP)		ND ND
DBPs Chloroform (Trichloromethane) EPA 524.2 ug/L 0.5 ND ND 8.2 0.78 J	-	16
Bromoform EPA 524.2 ug/L 0.5 ND ND ND ND ND ND Bromodichloromethane EPA 524.2 ug/L 0.5 ND ND 7 ND		ND 7
Chlorodibromomethane EPA 524.2 ug/L 0.5 ND ND 1.1 ND Total Trihalomethanes (TTHM) EPA 524.2 ug/L 0.5 ND ND 13 0.78		1.7 25
Bromochloroacetic acid SM 6251B ug/L 1 ND 3.5 ND Dibromoacetic acid SM 6251B ug/L 1 ND ND ND ND ND		4.4 ND
Dichloroacetic acid SM 6251B ug/L 1 ND 14 3.4 Monobromoacetic acid SM 6251B ug/L 1 ND ND ND		16 ND
Monochloroacetic acid SM 6251B ug/L 2 ND ND ND Total Haloacetic Acids (HAA5) SM 6251B ug/L 2 2.1 26 5.4		ND 43
Trichloroacetic acid SM 6251B ug/L 1 2.1 12 2 PCBs	-	27
PCB 1016 Aroclor EPA 505 ug/L 0.08 ND UJ ND PCB 1221 Aroclor EPA 505 ug/L 0.1 ND UJ ND		
PCB 1232 Aroclor	•	
PCB 1248 Aroclor EPA 505 ug/L 0.1 ND U ND PCB 1254 Aroclor EPA 505 ug/L 0.1 ND UJ ND	•	
PCB 1260 Aroclor	-	
PESTICIDES AND HERBICIDES Alachfor (Alanex) EPA 505 ug/L 0.1 ND 40c/L (Manex) EPA 505 ug/L 0.1 ND ND		
Aldrin (EPA Method 505) EPA 505 ug/L 0.01 ND U/ ND ND		
Dieldrin (EPA Method 505)		
Heptachlor (EPA Method 505) EPA 505 ug/L 0.01 0.01 J ND Heptachlor Epoxide EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 ND UJ ND Uddaga (ramps) BHC) EPA 505 ug/L 0.01 Uddaga (ramps) BHC) EPA 505 ug/L 0.01 Uddaga (ramps) BHC) EPA 505 ug/L 0.01 Uddaga (ramps) BHC Uddaga (ramps) BHC) EPA 505 ug/L 0.01 Uddaga (ramps) BHC Uddaga (ram		
Lindane (gamma-BHC) EPA 505 ug/L 0.01 ND ND Methoxychlor (EPA Method 505) EPA 505 ug/L 0.05 ND UJ ND		
2,4,5-T EPA 515.4 ug/L 0.2 ND ND ND		
2,4-D (EPA Method 515.4)		
2,4-DB EPA 515.4 ug/L 2 ND ND 3,5-Dichlorobenzoic acid EPA 515.4 ug/L 0.5 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND		
Actifuoriten EPA 515.4 ug/L 0.2 ND		
Ucamoa EPA 515.4 ug/L 0.1 ND ND ND ND ND ND ND ND ND ND		
Uningriph		
PRIOR PRIO		
VOCs I,1,1,2-Tetrachloroethane EPA 524.2 ug/L 0.5 ND ND ND		ND
1,1,1-Trichloroethane		ND ND
1.1,2-Trichloroethane EPA 524.2 ug/L 0.5 ND ND ND 1,1-Dichloroethane EPA 524.2 ug/L 0.5 ND ND ND		ND ND
1,1-Dichloroethylene EPA 524.2 ug/L 0.5 ND ND ND 1,1-Dichloropropene EPA 524.2 ug/L 0.5 ND ND ND		ND ND
1,2,3-Trichlorobenzene EPA 524.2 ug/L 0.5 ND ND ND 1,2,3-Trichloropropane EPA 524.2 ug/L 0.5 ND ND ND		ND ND
1,2,4-Trichlorobenzene EPA 524.2 ug/L 0.5 ND ND ND 1,2,4-Trimethylbenzene EPA 524.2 ug/L 0.5 ND ND ND		ND ND
1,2-Dichloroethane EPA 524.2 ug/L 0.5 ND ND ND 1,2-Dichloropropane EPA 524.2 ug/L 0.5 ND ND ND		ND ND
1,3,5-Trimethylbenzene EPA 524.2 ug/L 0.5 ND ND ND 1,3-Dichloropropane EPA 524.2 ug/L 0.5 ND ND ND	•	ND ND
2,2-Dichloropropane EPA 524.2 ug/L 0.5 ND ND ND 2-Butanone (MEK) EPA 524.2 ug/L 5 ND ND ND		ND ND
2-Hexanone		ND ND
Benzene EPA 524.2 ug/L 0.5 ND ND ND Bromobenzene EPA 524.2 ug/L 0.5 ND ND ND		ND ND
Bromochloromethane EPA 524.2 ug/L 0.5 ND ND ND Bromoethane EPA 524.2 ug/L 0.5 ND ND ND	•	ND ND
Bromomethane (Methyl Bromide) EPA 524.2 ug/L 0.5 ND ND ND Chlorobenzene EPA 524.2 ug/L 0.5 ND ND ND		ND ND
Chloroethane EPA 524.2 ug/L 0.5 ND ND ND Chloromethane(Methyl Chloride) EPA 524.2 ug/L 0.5 ND ND ND	•	ND ND
Dibromomethane EPA 524.2 ug/L 0.5 ND ND ND Carbon disulfide EPA 524.2 ug/L 0.5 ND ND ND		ND ND
Carbon Tetrachloride EPA 524.2 ug/L 0.5 ND ND ND cis-1,2-Dichloroethylene EPA 524.2 ug/L 0.5 ND ND ND	•	ND ND
cis-1,3-Dichloropropene EPA 524.2 ug/L 0.5 ND ND ND Dichlorodifluoromethane EPA 524.2 ug/L 0.5 ND ND ND		ND ND

				Sampling Event 1 (11/	13/2014)		Sampling Event 2 (02/1	18/2015)	
			Sampling Event 1 (11)	13/2014)		Sampling Event 2 (02/)	18/2015)		
				BIRWP-WASTEWATER	BIRWP-SECONDARY	BIRWP-RECLAIMED	BIRWP-WASTEWATER	BIRWP-SECONDARY	BIRWP - RECLAIMED
ANALYTE Dichloromethane	METHOD EPA 524.2	UNIT ug/L	MRL 0.5	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua
Di-isopropyl ether Ethyl benzene	EPA 524.2 EPA 524.2	ug/L ug/L	3 0.5	ND ND	-	ND ND	ND ND		ND ND
Hexachlorobutadiene Isopropylbenzene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	-	ND ND	ND ND	-	ND ND
m,p-Xylenes	EPA 524.2	ug/L	0.5	ND		ND	ND	-	ND
m-Dichlorobenzene (1,3-DCB) Methyl Tert-butyl ether (MTBE)	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND		ND ND	ND ND	-	ND ND
Naphthalene (EPA Method 524.2) n-Butylbenzene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND		ND ND	ND ND		ND ND
n-Propylbenzene o-Chlorotoluene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND		ND ND	ND ND		ND ND
o-Dichlorobenzene (1,2-DCB) o-Xylene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5	ND ND	-	ND ND	ND ND	-	ND ND
p-Chlorotoluene	EPA 524.2	ug/L	0.5	ND	-	ND	ND	-	ND
p-Dichlorobenzene (1,4-DCB) p-Isopropyltoluene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	-	ND ND	ND 1.4		ND ND
sec-Butylbenzene Styrene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5	ND ND		ND ND	ND ND		ND ND
tert-amyl Methyl Ether tert-Butyl Ethyl Ether	EPA 524.2 EPA 524.2	ug/L ug/L	3	ND ND	-	ND ND	ND ND	-	ND ND
tert-Butylbenzene Tetrachloroethylene (PCE)	EPA 524.2 EPA 524.2	ug/L	0.5	ND	-	ND	ND	==	ND
Toluene	EPA 524.2	ug/L ug/L	0.5 0.5	ND 1.9		ND ND	ND 1.9	-	ND ND
Total 1,3-Dichloropropene Total xylenes	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND		ND ND	ND ND		ND ND
trans-1,2-Dichloroethylene trans-1,3-Dichloropropene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND		ND ND	ND ND	-	ND ND
Trichloroethylene (TCE)	EPA 524.2	ug/L	0.5	ND	-	ND	ND	==	ND
Trichlorofluoromethane Trichlorotrifluoroethane (Freon 113)	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND		ND ND	ND ND		ND ND
Vinyl chloride (VC) SVOCS	EPA 524.2	ug/L	0.3	ND	-	ND	ND		ND
2,4-Dinitrotoluene 2,6-Dinitrotoluene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1	ND (<0.2) ND (<0.2)	-	ND ND			
4,4-DDD 4.4-DDE	EPA 525.2	ug/L	0.1	ND (<0.2) ND (<0.2) ND (<0.2)	-	ND ND	-	-	
4,4-DDT	EPA 525.2 EPA 525.2	ug/L ug/L	0.1	ND (<0.2)	-	ND			
Acenaphthene Acenaphthylene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1	ND (<0.2) ND (<0.2)	-	ND ND		-	
Acetochlor Alachlor	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.05	ND (<0.2) ND (<0.1)	-	ND ND	-		
Aldrin (EPA Method 525.2)	EPA 525.2	ug/L	0.05	ND (<0.1)	=	ND		==	==
Alpha-BHC alpha-Chlordane	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.05	ND (<0.2) ND (<0.1)		ND ND			
Anthracene Atrazine (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.02	ND (<0.04) ND (<0.1)		ND ND			
Benz(a)Anthracene Benzo(a)pyrene	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.02	ND (<0.1) ND (<0.04)		ND ND			
Benzo(b)Fluoranthene	EPA 525.2	ug/L	0.02	ND (<0.04)		ND			
Benzo(g,h,i)Perylene Benzo(k)Fluoranthene	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.02	ND (<0.1) ND (<0.04)		ND ND			**
Beta-BHC Bromacil(EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1	ND (<0.2) ND (<0.4)		ND ND			
Butachlor Butylbenzylphthalate	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.5	ND (<0.1) ND (<1)		ND ND			
Chlorobenzilate	EPA 525.2	ug/L	0.1	ND (<0.2)		ND		-	
Chloroneb Chlorothalonil(Draconil,Bravo)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1	ND (<0.2) ND (<0.2)		ND ND			
Chlorpyrifos (Dursban) Chrysene	EPA 525.2 EPA 525.2	ug/L ug/L	0.05	ND (<0.1) ND (<0.04)		ND ND			
Delta-BHC Di-(2-Ethylhexyl)adipate	EPA 525.2 EPA 525.2	ug/L ug/L	0.1	ND (<0.2) ND (<1.2)	-	ND ND		-	**
Di(2-Ethylhexyl)phthalate	EPA 525.2	ug/L	0.6	1.7	-	ND	-	-	
Diazinon (Qualitative) Dibenz(a,h)Anthracene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.05	ND (<0.2) ND (<0.1)	-	ND ND			
Dichlorvos (DDVP) Dieldrin (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.01	ND (<0.1) ND (<0.02)		ND ND			
Diethylphthalate Dimethoate	EPA 525.2 EPA 525.2	ug/L ug/L	0.5 0.1	4.4 ND (<0.2)	-	ND ND		-	
Dimethylphthalate	EPA 525.2	ug/L	0.5	ND (<0.1)		ND		=	
Di-n-Butylphthalate Di-N-octylphthalate	EPA 525.2 EPA 525.2	ug/L ug/L	0.1	ND (<2) ND (<0.2)		ND ND			
Endosulfan I (Alpha) Endosulfan II (Beta)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1	ND (<0.2) ND (<0.2)		ND ND			
Endosulfan Sulfate Endrin (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.01	ND (<0.2) ND (<0.02)		ND ND			
Endrin Aldehyde	EPA 525.2	ug/L	0.1	ND (<0.2)	==	ND			
EPTC Fluoranthene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1	ND (<0.2) ND (<0.2)		ND ND			**
Fluorene gamma-Chlordane	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.05	ND (<0.1) ND (<0.1)	-	ND ND			
Heptachlor (EPA Method 525.2) Heptachlor Epoxide (isomer B)	EPA 525.2 EPA 525.2	ug/L ug/L	0.01 0.05	ND (<0.02) ND (<0.1)		ND ND			
Hexachlorobenzene	EPA 525.2 EPA 525.2	ug/L	0.05	ND (<0.1) ND (<0.1) ND (<0.1)	-	ND ND	-	-	
Hexachlorocyclopentadiene Indeno(1,2,3,c,d)Pyrene	EPA 525.2	ug/L ug/L	0.05	ND (<0.1)		ND		=	
Isophorone Lindane	EPA 525.2 EPA 525.2	ug/L ug/L	0.5 0.04	ND (<1) ND (<0.08)		ND ND			
Malathion Methoxychlor (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.05	ND (<0.2) ND (<0.1)		ND ND		-	-
Metolachlor Metribuzin	EPA 525.2 EPA 525.2	ug/L	0.05	ND (<0.1) ND (<0.1)	-	ND ND		<u>-</u>	
Molinate	EPA 525.2	ug/L ug/L	0.1	ND (<0.2)	-	ND			
Naphthalene (EPA Method 525.2) Parathion	EPA 525.2 EPA 525.2	ug/L ug/L	0.5 0.1	ND (<0.1) ND (<0.2)		ND ND			
Pendimethalin Pentachlorophenol (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.04	ND (<0.2) ND (<0.08)		ND ND			
Permethrin (mixed isomers) Phenanthrene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1	ND (<0.2) ND (<0.08)	-	ND ND			**
Propachlor	EPA 525.2 EPA 525.2 EPA 525.2	ug/L	0.04	ND (<0.08) ND (<0.1) ND (<0.1)		ND ND		-	
Pyrene Simazine (EPA Method 525.2)	EPA 525.2	ug/L ug/L	0.05	ND (<0.1)		ND			
Terbacil Terbuthylazine	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1	ND (<0.2) ND (<0.2)	-	ND ND		-	
Thiobencarb Total PAH	EPA 525.2 EPA 525.2	ug/L ug/L	0.2	ND (<0.4) ND (<0.04)		ND ND			
trans-Nonachlor	EPA 525.2	ug/L	0.05	ND (<0.1)		ND		=	
rithuralin	EPA 525.2	ug/L	0.1	MID (<0.2) MRL = Minimum Reporting ND (<#) = Not Detected an mg/L = milligrams per liter µS/cm = microsiemens per MFN/100ml = Most Probab PFC = Perfluorinated Comp DBP = Disinfection Byprodu VOC = Volatile Organic Con Notes: 1) Some analytes are listed 2) Data qualifiers: J = Value is detected i J = Value is detected J = Value is detected	Level, ND = Not Detected a MRL is higher than the mell (ppm); µg/L = micrograms p centimeter; mV = millivolistic ble Number (colony forming ound; PBDE = Polybromina ound; PBDE = Polybrominated B ppound; SVOC = Semivolatil twice as they were analyzed and the result is estimated. and the result is estimated in the result is estimated in the result is estimated.	MID blove MRL; "" = Not Ana hod MRL due to dilutions per liter (ppb); ng/L = nano units) per 100 mi; PFU/101 ted Diphenyl Ether iphenyl e Organic Compound d via multiple methods. and biased low. and biased high.	 lyzed; Qual = Data Qualifier grams per liter (ppt)	-	-

				Budd Inlet Reclaimed Sampling Event 3 (05/		Sampling Event 4 (08/	19/2015)	
				BIRWP-WASTEWATER	BIRWP - RECLAIMED	BIRWP-WASTEWATER	BIRWP-SECONDARY	BIRWP-RECLAIMED
ANALYTE	METHOD	LINUT	4401					
ANALYTE FIELD PARAMETERS	METHOD	UNIT	MRL	Result Qual	Result Qual	Result Qual	Result Qual	Result Qu
emperature		units °C	N/A N/A	7.33 18.2	7.16 19.2	7.23	7.01	6.82 23.6
pecific Conductance Dxidation Reduction Potential (ORP)		μS/cm mV	N/A N/A	753 -25	638 677	729 -88.3	703 282.5	706 662
Dissolved Oxygen Free Cl		mg/L mg/L	N/A N/A	2.5	7.0	2.08	6.36	6.75
otal CI ABORATORY GENERAL WATER QUALITY PA		mg/L	N/A					
Alkalinity Alkalinity (as HCO3, calc)	SM 2320B SM2330B	mg/L mg/L	2 2	240 290	100 120	260 320	110 140	110 130
Carbonate Hydroxide	SM2330B SM2330B	mg/L mg/L	2	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Dioxide Specific Conductance	SM4500-CO2-D SM2510B	mg/L umho/cm	2	30 800	9.9 630	ND 820	ND 700	ND 700
Turbidity WASTEWATER/RECLAIMED WATER PARAME		NTU	0	0.99	0.99	0.99	**	
Fotal Suspended Solids Fotal Dissolved Solid	SM 2540D E160.1/SM2540C	mg/L mg/L	10	460 360	ND 390	250 410	ND 420	ND 420
Total Organic Carbon Chemical Oxygen Demand	SM5310C/E415.3 EPA 410.4	mg/L mg/L	0.3 5	140 740 J-	6.8 14 J-	160 510	14 J 18	9 11
Dissolved Organic Carbon - Final Dissolved Organic Carbon - Initial	Allgeier, 1996 Allgeier, 1996	mg/L mg/L	0.3 0.3	29 63	6.4 7.1 J+	20 56	7 6.9 J+	6 6.5 J
Biochemical Oxygen Demand Biodegradable Dissolved Organic Carbon	SM5210B 405.1 Allgeier, 1996	mg/L mg/L	3 0.3	260 34	ND 0.69	270 36	ND ND	ND ND (<0.6)
Bromide Chloride	EPA 300.0 EPA 300.0	ug/L mg/L	5 1	140 64	100 100	94 52	310 110	140 120
luoride iulfate	SM 4500F-C EPA 300.0	mg/L mg/L	0.05 0.5	0.31 20	0.24 30	0.18 22	0.16 36	0.15 35
ulfideTotal ulfur Total ICAP	SM4500SD/376.2 EPA 200.7	mg/L mg/L	0.05 0.1	0.11 29	ND 	0.21 19	ND 	ND
otal Hardness as CaCO3 by ICP (calc) otal Chlorine	SM 2340B SM 4500-CL G	mg/L mg/L	3 0.1	100 ND	 0.8 J-	100 2.1	0.12	0.74
ree Chlorine Chloramines	SM 4500CL-G/HACH SM 4500CL-G/HACH	mg/L mg/L	0.1	ND ND UJ	ND 0.78 J-	1.7 0.4	ND ND	ND 0.66
inion Sum - Calculated ation Sum - Calculated	SM 1030E SM 1030E	meq/L meq/L	0.001	7 4.7	5.6	7.2 4.4	6.3	6.4
ation Sum - Calculated ation Sum - Manual Calculation ation/Anion Difference	SM 1030E SM 1030E SM 1030E	% %	0.001	4.4		2.8	2	2
ation Balance with NH3	SM 1030E	meq/L	0	7.7		7.6		-
Otal Coliform	SM 9222B	MPN/100 mL	1	>2419600	ND	>2419600	310	ND
ecal Coliform ecal Coliform	SM 9222D SM 9222D	MPN/100 mL CFU/mL	1	 >2419600 J	ND ND	>200000	9	ND
Cryptosporidium Giardia	EPA 1623 EPA 1623	oocysts/L Organism/L	NA NA			< 10 2620		< 0.100 < 0.100
omatic coliphage titer Male-specific coliphage titer	FR59#28 1602 FR59#28 1602	P/100mL P/100mL	1	110000 140000	<1 <1	1600000 110000	1 <1	<1 <1
NUTRIENTS Vitrate (as Nitrogen)	EPA 300.0	mg/L	0.1	ND (<0.2)	1.9	ND (<0.2)	1.6	1.8
litrite litrate+Nitrite	EPA 300.0 EPA 300.0	mg/L mg/L	0.05	ND (<0.1) ND (<0.2)	ND (<0.25) 1.9	ND (<0.1) ND (<0.2)	ND (<0.1) 1.6	ND (<0.1) 1.8
Ammonia Nitrogen	EPA 350.1 EPA 351.2	mg/L	0.1 0.05 0.2	41 65	1.9 ND 1	41 82	1.6 ND 1.6	0.06 1.2
Geldahl Nitrogen Otal Nitrogen	EPA 353-351	mg/L mg/L	0.2	65	1 2.9 3.7	82	3.2	3
Dissolved Orthophosphate (as P) Dissolved Total Phosphorus	4500P-E/365.1 SM4500-PE/EPA 365.1	mg/L mg/L	0.01	4.6 4.8	3.8	4.1 3.7	5 4.6	4.8
Orthophosphate (as P) Otal Phosphorus	4500P-E/365.1 SM4500-PE/EPA 365.1	mg/L mg/L	0.01 0.02	4.6 9.4	3.7 3.8	4 7.4	4.9 4.6 J-	4.9 4
METALS (DISSOLVED) Aluminum	EPA 200.8	ug/L	20	25	ND	ND	ND	ND
ntimony vrsenic	EPA 200.8 EPA 200.8	ug/L ug/L	1	ND 1	ND 1.3	ND 1.9	ND 2.1	ND 2
arium eryllium	EPA 200.8 EPA 200.8	ug/L ug/L	2	6.1 ND	4.9 ND	6.8 ND	4.8 ND	4.5 ND
Boron Cadmium	EPA 200.7 EPA 200.8	mg/L ug/L	0.05 0.5	0.17 ND	0.18 ND	0.21 ND	0.2 ND	0.2 ND
Calcium Chromium	EPA 200.7 EPA 200.8	mg/L ug/L	1	19 ND	22 ND	21 ND	24 ND	25 ND
Copper	EPA 200.8	ug/L	2	35	6.1	10	8	9.3
ead	EPA 200.7 EPA 200.8	mg/L ug/L	0.02	0.18 ND	0.026 ND	0.13 ND	ND 0.62	ND 0.58
Magnesium Manganese	EPA 200.7 EPA 200.8	mg/L ug/L	0.1	8.8 61	11 ND	9.8 430	7.2	13 ND
Лercury Potassium	EPA 245.1 EPA 200.7	ug/L mg/L	0.2	ND 15	ND 15	ND 16	ND 17	ND 17
Seleniun Silica	EPA 200.8 EPA 200.7	ug/L mg/L	5 0.5	ND 39	ND 37	ND 44	ND 43	ND 43
ilicon ilver	EPA 200.7 EPA 200.8	mg/L ug/L	0.2 0.5	18 ND	18 ND	20 ND	20 ND	20 ND
Sodium Thallium	EPA 200.7 EPA 200.8	mg/L ug/L	1	51 ND	72 ND	50 ND	85 ND	90 ND
inc METALS (TOTAL)	EPA 200.8	ug/L	20	42	53	68	150	110
Muminum	EPA 200.8	ug/L	20	98		390		
Antimony Arsenic	EPA 200.8 EPA 200.8	ug/L ug/L	1	1.4 ND	**	ND 2.9		
Jarium Jeryllium	EPA 200.8 EPA 200.8	ug/L ug/L	1	14 ND		40 ND		
oron Cadmium	EPA 200.7 EPA 200.8	mg/L ug/L	0.05 0.5	0.17 ND		0.2 ND		
Calcium Chromium	EPA 200.7 EPA 200.8	mg/L ug/L	1	25 ND		24 1.7		
Copper ron	EPA 200.8 EPA 200.7	ug/L mg/L	2 0.02	62 0.83	==	88 1.4	==	
ead Aagnesium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5 0.1	1.2 10		2.2 10		
Manganese Mercury	EPA 200.8 EPA 245.1	ug/L ug/L	2 0.2	64 ND	==	920 ND		
lickel	EPA 200.8	ug/L	5	ND 17	**	ND		
otassium ielenium	EPA 200.7 EPA 200.8	mg/L ug/L	5	ND		18 ND		
ilica ilver	EPA 200.7 EPA 200.8	mg/L ug/L	0.5	40 ND		1	**	
odium hallium	EPA 200.7 EPA 200.8	mg/L ug/L	1	51 ND		48 ND		
inc RESIDUAL CHEMICALS	EPA 200.8	ug/L	20	60		140		
I-Nitroso dimethylamine (NDMA) ,4-Dioxane	EPA 521 EPA 522	ng/L ug/L	2 0.07	ND UJ 0.26	3 0.43	ND UJ 0.29		2.4 0.45
,7-Dimethylxanthine ,4-D (Method LC-MS-MS)	LC-MS-MS LC-MS-MS	ng/L ng/L	10 5	560 430	ND R ND	920 ND	ND 31	ND ND
-n-Octylphenol diethoxylate -n-Octylphenol monoethoxylate	LC-MS-MS-WW LC-MS-MS-WW	ng/L ng/L	100	ND ND	ND ND	250 ND		ND ND
-nonylphenol - semi quantitative -para-Nonylphenol	LC-MS-MS LC-MS-MS-WW	ng/L ng/L	100	1200 J	110 J	440 J	870 J	240
-tert-octylphenol ccsulfame-K	LC-MS-MS LC-MS-MS	ng/L ng/L	50 20	200 43000	ND 12000 J+	ND 31000	ND 21	ND 23
cetaminophen Slbuterol	LC-MS-MS LC-MS-MS	ng/L ng/L	5	82000 ND	ND ND	100000 46 J	ND 80	ND ND
inouteroi imoxicillin (semi-quantitative) indorostenedione	LC-MS-MS LC-MS-MS	ng/L ng/L	20	17000 170 J	ND ND UJ	ND UJ	3900 ND UJ	ND ND ND L
itenolol itrazine (Method LC-MS-MS)	LC-MS-MS LC-MS-MS	ng/L	5	2400 ND	190 ND	1900 ND	270 ND	220 ND
zithromycin	LC-MS-MS	ng/L ng/L	20	330 J	ND UJ	ND UJ	65 J+	ND L
endroflumethiazide ezafibrate	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND ND	ND ND	ND ND	ND ND	ND ND
PA (Bisphenol A, low detection limit)	LC-MS-MS-WW LC-MS-MS	ng/L ng/L	100 10	ND 150	ND ND	ND	ND	ND
romacil (Method LC-MS-MS) utalbital	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 18	ND ND	ND 6.1	ND 6.8	ND 5.9
utylparben affeine	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	83 82000	ND ND	ND 97000	ND ND	ND 76
arbadox arbamazepine	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND 820	ND 260	ND 490	ND 410	ND 330
arisoprodol hloridazon	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND ND	ND ND UJ	ND ND	ND ND	ND ND
hloramphenicol hlorotoluron	LC-MS-MS LC-MS-MS	ng/L ng/L	10	ND ND	ND ND	ND ND	ND ND	ND ND
imetidine lofibric Acid	LC-MS-MS LC-MS-MS	ng/L	5 5	490 J	ND UJ ND	ND UJ ND	16 J	ND L
otinine	LC-MS-MS	ng/L ng/L	10	4400	38 J	2400	ND	130
yanazine ACT	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND ND	ND 5 J-	ND ND	ND ND	ND ND
EA EET	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	ND 300	ND 27	ND 1100	ND 22	ND 18
ehydronifedipine IA	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND	ND ND	ND ND	ND ND	7.5 ND
iazepam iclofenac	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND 150	ND ND	ND ND	ND 50	ND ND
iluron ilantin	LC-MS-MS LC-MS-MS	ng/L ng/L	5 20	ND 220	ND UJ ND	ND ND	ND ND	ND ND
rythromycin	LC-MS-MS LC-MS-MS	ng/L	5 10	92 84	ND ND	29 ND	42 ND	ND ND
stradiol - 17 beta	LC-MS-MS	ng/L ng/L	5	ND	ND	ND	ND ND	ND
stradiol - 17 beta (low detection) strone	LC-MS-MS-WW LC-MS-MS	ng/L ng/L	0.5 0.5	3.3 49	ND ND	ND ND	ND	ND ND
strone (low detection) thinyl Estradiol - 17 alpha	LC-MS-MS-WW LC-MS-MS	ng/L ng/L	0.5 5	ND ND	ND ND	ND ND	ND	ND ND
thinyl Estradiol - 17 alpha (low detection)	LC-MS-MS-WW	ng/L	0.5	ND	ND	39		38

				Budd Inlet Recl Sampling Event		Water Plant (BIRW 20/2015)		Sampling Event 4 (08/	19/2015)	
				BIRWP-WASTEW	/ATER	BIRWP - RECLAIME	D	BIRWP-WASTEWATER	BIRWP-SECONDARY	BIRWP-RECLAIMED
ALL LONG TO THE PARTY OF THE PA	Lucruon	Luca								
ANALYTE Fluoxetine	METHOD LC-MS-MS	UNIT ng/L	MRL 10	Result 58	Qual	31	J-	Result Qual	Result Qual	Result Qual 45
Gemfibrozil Ibuprofen	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	3900 ND		14 ND		1900 8900	140 ND	12 ND
lopromide	LC-MS-MS LC-MS-MS	ng/L ng/L	10 5	33000 380		14000 62		10000 24	10000 92	10000 80
Isobutylparaben Isoproturon	LC-MS-MS LC-MS-MS	ng/L ng/L	5 100	80 ND		ND ND		ND ND	ND ND	ND ND
Ketoprofen Ketorolac	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND		ND ND		ND 160	ND ND	ND ND
Lidocaine Lincomycin	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	690 ND		ND ND	UJ	ND ND	240 ND	ND ND
Linuron Lopressor	LC-MS-MS LC-MS-MS	ng/L ng/L	5 20	ND 840		ND 170	J-	ND 260	ND 690	ND 210
Meclofenamic Acid Meprobamate	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND		ND	J-	ND ND	ND ND	ND 41
Metazachlor Metformin	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 84000	R		R	ND R 480000	ND R	ND R 1500
Methylparaben Naproxen	LC-MS-MS LC-MS-MS	ng/L	20	48 100		ND ND		ND 9500	ND ND	ND ND
Nifedipine	LC-MS-MS	ng/L ng/L	20	ND	UJ	ND	UJ	ND UJ	ND UJ	ND UJ
Nonylphenol Diethoxylate Nonylphenol Monoethoxylate	LC-MS-MS-WW LC-MS-MS-WW	ng/L ng/L	100 100	ND ND		ND ND		880 ND		ND ND
Norethisterone Octylphenol	LC-MS-MS LC-MS-MS-WW	ng/L ng/L	5 100	ND 		ND 		ND 	ND 	ND
Oxolinic acid Pentoxifylline	LC-MS-MS LC-MS-MS	ng/L ng/L	10 5	ND ND		ND 9.9	J-	ND ND	ND ND	ND ND
Phenazone Primidone	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 220		ND 150		ND 360	ND 230	ND 200
Progesterone Propazine	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	51 ND		ND ND		ND ND	ND ND	ND ND
Propylparaben Quinoline	LC-MS-MS LC-MS-MS	ng/L ng/L	5	1200 330		ND 20		ND 130	ND ND	ND 13
Simazine (Method LC-MS-MS)	LC-MS-MS	ng/L	5	ND		ND		ND	ND	ND
Sucralose Sulfachloropyridazine	LC-MS-MS LC-MS-MS	ng/L ng/L	100 5	77000 ND		ND	J+ UJ	62000 ND	44000 ND	50000 ND
Sulfadiazine Sulfadimethoxine	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND		ND	R	ND 35	ND ND	ND ND
Sulfamerazine Sulfamethazine	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND ND		ND ND	UJ	ND ND	ND ND	ND ND
Sulfamethizole Sulfamethoxazole	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 240		ND ND	-	ND 2900	ND 810	ND 90
Sulfathiazole TCEP	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 90		ND 110		ND 200	ND 280	ND 200
TCPP	LC-MS-MS	ng/L	100	730		500		630	730	610
TDCPP Theobromine	LC-MS-MS LC-MS-MS	ng/L ng/L	100	ND 19000		310 ND		180 20000	340 ND	210 57
Thiabendazole Testosterone	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND		ND ND		ND ND	ND ND	ND ND
Triclocarban Triclosan	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	ND 540		ND ND		ND 70	ND 39	ND ND
Trimethoprim Warfarin	LC-MS-MS LC-MS-MS	ng/L ng/L	5	470 ND		ND ND		ND 15	450 8.8	ND ND
PFCs									1	
Perfluoro butanoic acid- PFBA Perfluoro octanesulfonate-PFOS	MWH PFC MWH PFC	ng/L ng/L	5	ND ND		ND ND		ND ND		ND ND
Perfluoro octanesulfonic acid - PFOS Perfluoro octanoic acid - PFOA	MWH PFC MWH PFC	ng/L ng/L	5 5	ND ND		ND ND		ND ND		ND ND
Perfluoro-1-butanesulfonate Perfluoro-1-butanesulfonic acid	MWH PFC MWH PFC	ng/L ng/L	5 5	ND ND		ND ND		ND ND		ND ND
Perfluoro-1-hexanesulfonate Perfluoro-1-hexanesulfonic acid	MWH PFC MWH PFC	ng/L ng/L	5 5	ND ND		ND ND		ND ND		ND ND
Perfluoro-n-decanoic acid	MWH PFC	ng/L	5	ND		ND		ND	**	ND
Perfluoro-n-heptanoic acid Perfluoro-n-hexanoic acid	MWH PFC MWH PFC	ng/L ng/L	5 5	ND ND		ND ND		ND ND		ND ND
Perfluoro-n-nonanoic acid Perfluoropentanoic acid	MWH PFC MWH PFC	ng/L ng/L	5	ND ND		ND ND		ND ND		ND ND
PBDEs/EDB/DBCP BDE-100	GC-QQQ PBDE	ng/L	5	ND	UJ	ND		ND UJ		ND ND
BDE-153 BDE-154	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5	ND ND	UJ	ND ND		ND UJ ND UJ		ND ND
BDE-183	GC-QQQ PBDE	ng/L	5	ND	UJ	ND		ND UJ		ND
BDE-209 BDE-28	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	100 5	ND ND	UJ	ND	UJ UJ	ND UJ ND UJ		ND ND
BDE-47 BDE-99	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5 5	ND ND	UJ	ND ND	UJ	9.9 J- 8.4 J-		ND ND
Bifenthrin cis-Permethrin	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5	ND 14	UJ J-	ND ND	UJ	ND UJ ND UJ		ND ND
Fipronil Total Permethrin	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	2 10	ND 33	UJ J-		UJ	5.1 J- ND UJ		ND ND
trans-Permethrin	GC-QQQ PBDE	ng/L	5	19	J-	ND		ND UJ		ND
Dibromochloropropane (DBCP) Ethylene Dibromide (EDB)	EPA 551.1 EPA 551.1	ug/L ug/L	0.01 0.01	ND ND		ND ND		ND ND		ND ND
DBPs Chloroform (Trichloromethane)	EPA 524.2	ug/L	0.5	1.7		20		4.4	ND	29
Bromoform Bromodichloromethane	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND		ND 14		ND 0.62	ND ND	1.4 26
Chlorodibromomethane Total Trihalomethanes (TTHM)	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND 1.7		5.1 39		ND 5	ND ND	12 68
Bromochloroacetic acid Dibromoacetic acid	SM 6251B SM 6251B	ug/L	1 1	ND ND		9.2 1.5		ND ND		10
Dichloroacetic acid	SM 6251B	ug/L ug/L	1	4.2		20		1.7		18
Monobromoacetic acid Monochloroacetic acid	SM 6251B SM 6251B	ug/L ug/L	2	ND ND		ND ND		ND ND		ND 2.9
Total Haloacetic Acids (HAA5) Trichloroacetic acid	SM 6251B SM 6251B	ug/L ug/L	1	8.9 4.7		62 40		4.8		56 32
PCBs PCB 1016 Aroclor	EPA 505	ug/L	0.08					ND UJ		ND
PCB 1221 Aroclor PCB 1232 Aroclor	EPA 505 EPA 505	ug/L	0.1	-				ND UJ		ND ND
PCB 1242 Aroclor	EPA 505	ug/L ug/L	0.1			==		ND UJ		ND
PCB 1248 Aroclor PCB 1254 Aroclor	EPA 505 EPA 505	ug/L ug/L	0.1	-				ND UJ	**	ND ND
PCB 1260 Aroclor Total PCBs	EPA 505 EPA 505	ug/L ug/L	0.1 0.1					ND UJ ND UJ		ND ND
PESTICIDES AND HERBICIDES Alachlor (Alanex)	EPA 505	ug/L	0.1					ND UJ		ND
Aldrin (EPA Method 505) Chlordane	EPA 505 EPA 505	ug/L ug/L	0.01					ND UJ ND UJ		ND ND
Dieldrin (EPA Method 505)	EPA 505	ug/L	0.01	-				ND UJ		ND
Endrin (EPA Method 505) Heptachlor (EPA Method 505)	EPA 505 EPA 505	ug/L ug/L	0.01					ND UJ		ND ND
Heptachlor Epoxide Lindane (gamma-BHC)	EPA 505 EPA 505	ug/L ug/L	0.01	-				ND UJ	**	ND ND
Methoxychlor (EPA Method 505) Toxaphene	EPA 505 EPA 505	ug/L ug/L	0.05 0.5					ND UJ ND UJ		ND ND
2,4,5-T 2,4,5-TP (Silvex)	EPA 515.4 EPA 515.4	ug/L ug/L	0.2					ND ND		ND ND
2,4-D (EPA Method 515.4) 2,4-DB	EPA 515.4 EPA 515.4	ug/L ug/L	5 2					ND ND		ND ND
3,5-Dichlorobenzoic acid Acifluorfen	EPA 515.4 EPA 515.4	ug/L ug/L	0.5	-		-		ND ND		ND ND
Bentazon	EPA 515.4	ug/L	0.5					ND	**	ND
Dicamba Dalapon	EPA 515.4 EPA 515.4	ug/L ug/L	0.1			-		ND ND		ND 1.7
Dichlorprop Dinoseb	EPA 515.4 EPA 515.4	ug/L ug/L	0.5 0.2]	ND ND	**	ND ND
Pentachlorophenol (EPA Method 515.4) Picloram	EPA 515.4 EPA 515.4	ug/L ug/L	0.04					ND ND		ND ND
Tot DCPA Mono&Diacid Degradate VOCs	EPA 515.4	ug/L	0.1			-		ND ND		ND ND
1,1,1,2-Tetrachloroethane	EPA 524.2	ug/L	0.5	ND ND		ND ND		ND ND	ND ND	ND ND
1 1 1-Trichlorocthono		ug/L ug/L	0.5	ND ND		ND ND		ND ND	ND ND	ND ND
	EPA 524.2 EPA 524.2		0.5	ND		ND ND		ND ND	ND	ND ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	EPA 524.2 EPA 524.2 EPA 524.2	ug/L ug/L	0.5	ND		ND			ND	ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	EPA 524.2 EPA 524.2	ug/L		ND ND ND		ND ND	-	ND ND	ND ND ND	ND ND ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	ug/L ug/L ug/L ug/L ug/L	0.5 0.5	ND ND ND		ND ND		ND ND ND	ND ND ND	ND ND ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropoene 1,2-Brichloroethylene 1,2,3-Trichloropoene 1,2,3-Trichloropropane 1,2,3-Trichloropropane	EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND		ND ND ND ND		ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropene 1,1-Dichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Dichloroethane	EPA 524.2 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND 0.71		ND ND ND ND ND ND ND ND		ND	ND	ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropene 1,1-Dichloropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropenane 1,2,4-Trichlorobenzene 1,2-Dichloropenane 1,2-Unichlorobenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND N		ND		ND N	ND N	ND N
1.1,2,2 Tetrachloroethane 1.1,2-Trichloroethane 1.1-Dichloroethane 1.1-Dichloropethane 1.1-Dichloropropene 1.2,3-Trichloropropene 1.2,3-Trichloropropane 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Dichloroethane 1.2-Dichloroethane 1.3-Dichloropropane 1.3,5-Trimethylbenzene 1.3,5-Trimethylbenzene 1.3-Dichloropropane	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND N		ND N		ND N	ND N	ND N
1.1,2,2 Tetrachloroethane 1.1,2-Trichloroethane 1.1-Dichloroethane 1.1-Dichloropethane 1.1-Dichloropene 1.2,3-Trichloropene 1.2,3-Trichloropene 1.2,3-Trichloropene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichloropena 1.2-Dichloroethane 1.2-Dichloropena 1.2-Dichloropena 1.2-Dichloropena 1.2-Dichloropena 1.3-Dichloropena 1.3-Dichloropena 2.2-Dichloropena 2.2-Di	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		ND N		ND N	NO N	ND N
1.1.2.2 Tetrachloroethane 1.1.2-Trichloroethane 1.1.1-Dichloroethane 1.1.1-Dichloropthylene 1.1.1-Dichloropthylene 1.2.3-Trichloropthylene 1.2.3-Trichloropthylene 1.2.3-Trichloropthylene 1.2.4-Trichlorobenzene 1.2.4-Trimethylbenzene 1.2.1-Dichloropthylene 1.2.1-Dichloropthylene 1.2.1-Dichloropthylene 1.2.1-Dichloropthylene 1.3.5-Trimethylbenzene 1.2-Dichloropthylene 1.3-Dichloropthylene 1.3-Dichloropthyle	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND		ND N		ND N	NO NO NO NO NO NO NO NO	ND ND ND ND ND ND ND ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloropene 1,2,3-Trichloropene 1,2,3-Trichloropenae 1,2,3-Trichloropenae 1,2,4-Trimethylbenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2-Dichloropropane 2-Dichloropropane 4-Methyl-2-Pentanone (MEK) 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Benzene	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		NID		ND N	NO NO NO NO NO NO NO NO	ND ND ND ND ND ND ND ND
1.1.2.2-Tetrachloroethane 1.1Dichloroethane 1.1Dichloroethane 1.1Dichloroethane 1.1Dichloropene 1.2Brichloroethane 1.2Trichlorobenzene 1.2Trichlorobenzene 1.2Trichlorobenzene 1.2Trichloropenzene 1.2Dichloroethane 1.2Dichloroethane 1.2Dichloropenzene 1.2Dichloropenzene 1.2Dichloropenzene 1.2Dichloropenzene 1.3Trimethylbenzene 1.3-Dichloropropane 2.2-Dichloropropane 2.2-Dichloropropane 2.2-Dichloropropane 2.2-Dichloropenzene Butanone (MEK) Benzene Bromobenzene Bromobenzene Bromobenzene	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		ND N		ND N	ND N	ND ND ND ND ND ND ND ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichloropenene 1,2,4-Trichloropenene 1,2,4-Trichloropenene 1,2-Dichloroethane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Benzene Bromobenzene Bromochloromethane Bromoethane Bromoethane Bromomethane Bromomethane Bromomethane Bromomethane	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		ND N		ND N	ND N	ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,2-Dichloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Benzene Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochloromethane Bromochlane Glorobenzene Chlorobenzene Chlorobenzene	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		NID		ND N	NO NO NO NO NO NO NO NO	ND ND ND ND ND ND ND ND
1.1,2.2-Tetrachloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.1-Dichloroethane 1.1-Dichloropene 1.2,3-Trichloropene 1.2,3-Trichloropene 1.2,3-Trichloropropane 1.2,2-Trichloropropane 1.2,2-Trichloropropane 1.2-Dichloroethane 1.2-Dichloroethane 1.2-Dichloropropane 1.3-Dichloropropane	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		NID		ND N	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichloropenzene 1,2,4-Trichloropenzene 1,2,4-Trichloropenzene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 2,3-Trimethylbenzene 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane Butanone (MEK) 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Benzene Bromoebnzene Bromoethane Bromoethane Bromoethane Bromoethane Bromoethane Bromoethane Bromoethane Chloroethane Chloroethane Chlorotethane Chl	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		ND N		ND N	ND N	ND ND ND ND ND ND ND ND
1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichloropenane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Dichloropropane 2-Dichloropropane 2-Butanone (MEK) 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Benzene Bromoethane Bromoethane Bromoethane Bromoethane Bromoethane Bromoethane Chlorobenzene Chlorobenzene Chloromethane Carbon disuffice	EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND ND ND ND ND ND ND ND		ND N		ND N	ND N	ND ND ND ND ND ND ND ND

Result		19/2015	Result
Result		Result	Result
ND	ND	NID	N.56
ND	ND	NID	ND
ND	ND	NID	ND
ND	ND	NID	ND
NID	ND	NID	ND
NID	ND ND ND ND ND ND ND ND	NID	ND
ND	ND	NID	ND
NID	ND ND ND ND ND ND ND ND	NID	ND
NID	NID NID	NID	ND
NID	0.52 0.52 ND	NID	ND
ND N	0.52 ND	NID	ND
NID	ND ND ND ND ND ND ND ND	NID	ND
NID	ND ND ND ND ND ND ND ND	NID	ND
ND N	ND ND ND ND ND ND ND ND	ND N	ND
ND N	3.8 ND ND ND ND ND ND ND ND ND N	NID	ND
NID	ND N	ND N	ND
ND N	ND	ND N	ND
ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND	ND
ND N	ND N	ND N	ND N
ND	ND	ND	ND
	ND N		ND
	ND N		ND ND ND ND ND ND ND ND
	ND N		ND ND ND ND ND ND ND ND
	ND N		ND ND ND ND ND ND ND ND
	ND N		ND
	ND N		ND N
	ND N		ND ND ND ND ND ND ND ND ND
	ND N		ND ND ND ND
	ND N		ND ND ND ND
	ND		ND ND
	ND 1.2 ND		ND
	ND ND ND 1.2 ND		
	ND 1.2 ND		ND ND
	1.2 ND		ND ND
			ND
			ND ND
	ND ND		ND ND
	ND		ND
	ND ND		ND ND
	2.1		ND ND
	ND ND		ND
-	ND ND		ND ND
	3.9 ND		ND ND
	ND		ND
	ND ND		ND ND
	ND ND		ND ND
	ND		ND
-	ND ND		ND ND
	ND ND		ND ND
	ND		ND
	ND		ND ND
	ND ND		ND ND
	ND		ND
-	ND		ND ND
-	ND ND		ND ND
	ND		ND
	ND		ND ND
-	ND ND		ND ND
	ND		ND
-	ND		ND ND
	ND		ND ND
	ND		ND
-	ND		ND ND
	ND ND		ND ND
	ND		ND
	ND		ND ND
	ND	aluzadi Oual - D-t- C "C	ND
		ND	ND

					d Water Plant (MWRW	Р)			la 1: 5 +0.4004	47/0045)	
				Sampling Event 1 (11/		MWRWP-	MWRWP-	DUP MWRWP-	Sampling Event 2 (02/		MWRWP-
				MWRWP-WASTEWATER	MWRWP-RECLAIMED	PRE-WETLANDS	POST-WETLANDS	POST-WETLANDS	MWRWP-WASTEWATER	MWRWP-RECLAIMED	POST-WETLANDS
ANALYTE FIELD PARAMETERS pH	METHOD	UNIT	MRL N/A	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Temperature Specific Conductance		°C μS/cm	N/A N/A	14.3 886.0	15.4 562.4	13.9 536.4	10.0 515.8	10.0 515.8	17.2 824.0	18.6 552.8	10.9 508.5
Oxidation Reduction Potential (ORP) Dissolved Oxygen Free Cl		mV mg/L mg/L	N/A N/A N/A	65.8 2.48 0.0	424.1 5.46 1.3	306.9 5.43 0.2	144.3 3.01 0.0	144.3 3.01 0.0	92.0 2.03 0.0	415.2 5.56 0.6	82.9 9.35 0.0
Total CI LABORATORY GENERAL WATER QUALITY PAR.	AMETERS	mg/L	N/A	0.1	1.8	0.4	0.0	0.0	0.0	1.0	0.0
Alkalinity Alkalinity (as HCO3, calc)	SM 2320B SM2330B	mg/L mg/L	2 2	310 380	130 160	120 150	130 160	130 160	310 380	110 140	110 140
Carbonate Hydroxide Carbon Dioxide	SM2330B SM2330B SM4500-CO2-D	mg/L mg/L mg/L	2 2 2	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND 25	ND ND 14	ND ND 7.3
Specific Conductance Turbidity	SM2510B Default	umho/cm NTU	2 0	890 0.99	550 0.99	520 0.99	510	510	860 0.99	510 0.99	490 0.99
WASTEWATER/RECLAIMED WATER PARAMET Total Suspended Solids	SM 2540D	mg/L	10	210	ND	ND	ND	ND 222	200	ND	ND
Total Dissolved Solid Total Organic Carbon Chemical Oxygen Demand	E160.1/SM2540C SM5310C/E415.3 EPA 410.4	mg/L mg/L mg/L	10 0.3 5	92 570	340 6.4 19	340 5.6 18	320 5.3 21	320 5.3 20	350 94 550	340 13 10	310 13 10
Dissolved Organic Carbon - Final Dissolved Organic Carbon - Initial	Allgeier, 1996 Allgeier, 1996	mg/L mg/L	0.3 0.3	40 64	4.7 5.5 J+	6 5.4 J+	6 5.2 J+	6 J 4.5 J+	35 58	5.3 5.9 J+	8.1 6.6
Biochemical Oxygen Demand Biodegradable Dissolved Organic Carbon Bromide	SM5210B 405.1 Allgeier, 1996 EPA 300.0	mg/L mg/L ug/L	0.3 5	320 J 24 110	1.1 J 0.76 J+ 77	1.3 J ND 61 J	2.5 J ND 57	2.2 J ND 56	280 23 81	ND 0.62 J+ 44	ND (<3) 46
Chloride Fluoride	EPA 300.0 SM 4500F-C	mg/L mg/L	1 0.05	47 0.13	50 0.088	48 0.09	48 0.087 J	48 0.066 J	46 0.11	53 0.095	52 0.092
Sulfate SulfideTotal	EPA 300.0 SM4500SD/376.2	mg/L mg/L	0.5	0.24	25 ND	25 ND	23 ND	24 ND	20 0.33	28 ND	26 ND
Sulfur Total ICAP Total Hardness as CaCO3 by ICP (calc) Total Chlorine	EPA 200.7 SM 2340B SM 4500-CL G	mg/L mg/L mg/L	0.1 3 0.1	640 140 ND	1.2 J-	 0.34 J-	 ND	 ND	10 130 ND	 0.34 J-	 ND
Free Chlorine Chloramines	SM 4500CL-G/HACH SM 4500CL-G/HACH	mg/L mg/L	0.1	ND ND UJ	ND 1.1 J-	ND 0.26 J-	ND UJ	ND ND UJ	ND ND UJ	ND 0.31 J-	ND ND UJ
Anion Sum - Calculated Cation Sum - Calculated Cation Sum - Manual Calculation	SM 1030E SM 1030E	meq/L meq/L	0.001			-			7.9 5.2	4.9	4.5
Cation Sum - Manual Calculation Cation/Anion Difference Cation Balance with NH3	SM 1030E SM 1030E	% meq/L	0 0			-	==		0.85		
PATHOGENS Total Coliform	SM 9222B	MPN/100 mL	1	>241960 J	<1 J	<1 J	81 J	65 J	>2419600	ND	
Fecal Coliform Fecal Coliform Cryptosporidium	SM 9222D SM 9222D EPA 1623	MPN/100 mL CFU/mL oocysts/L	1 1 NA	 >241960 J <189.753	<1 J <10.526	 <1 J <9.091	23 J 21.622	13 J 30.769	 >2419600 J 	ND	
Giardia Somatic coliphage titer	EPA 1623 FR59#28 1602	Organism/L P/100mL	NA 1	569.26 570000	<10.526 <1	<9.091 <1	118.919 20 J	71.795 14 J	 27000	<1	1
Male-specific coliphage titer NUTRIENTS	FR59#28 1602	P/100mL	1	360000	<1	<1	<1	<1	25000	<1	<1
Nitrate (as Nitrogen) Nitrite Nitrate+Nitrite	EPA 300.0 EPA 300.0 EPA 300.0	mg/L mg/L mg/L	0.1 0.05 0.1	ND (<0.2) ND (<0.1) ND (<0.2)	4.6 ND 4.6	4.3 ND (<0.1) 4.3	2.3 ND (<0.1) 2.3	2.4 ND (<0.1) 2.4	ND (<0.2) ND (<0.1) ND (<0.2)	8.7 ND (<0.1) 8.7	4.5 ND (<0.1) 4.5
Ammonia Nitrogen Kjeldahl Nitrogen	EPA 350.1 EPA 351.2	mg/L mg/L	0.05 0.2	44 J+ 63	1.1 2.1	ND ND	0.11 0.73	0.11 0.87	40 73	ND 0.82	ND 0.88
Total Nitrogen Dissolved Orthophosphate (as P)	EPA 353-351 4500P-E/365.1 SM4500-BE/EPA 365.1	mg/L mg/L	0.2 0.01	63 4.6	6.7 3.6	4.3 3.3	3 3.3	3.3 3.3	73 4.9	9.5 3.6	5.4 3.8
Dissolved Total Phosphorus Orthophosphate (as P) Total Phosphorus	SM4500-PE/EPA 365.1 4500P-E/365.1 SM4500-PE/EPA 365.1	mg/L mg/L mg/L	0.4 0.01 0.02	4.8 4.8 8.2	3.7 3.3 3.6	3.6 3.6 J- 3.4	3.4 3.7 3.3	3.4 3.2 3.3	4.9 J+ 6 9.9	4 J+ 3.1 3.9	3.6 J+ 3.3 3.8
METALS (DISSOLVED) Aluminum	EPA 200.8	ug/L	20	25	ND	ND	ND	ND	34	ND	ND
Antimony Arsenic	EPA 200.8 EPA 200.8 EPA 200.8	ug/L ug/L	1 1 2	ND 1.1 7.9	ND 1.1 8.3	ND 1.1 8.1	ND 1 8.6	ND 1.1 8.5	ND ND 6.6	ND ND ND	ND ND 7.3
Barium Beryllium Boron	EPA 200.8 EPA 200.7	ug/L ug/L mg/L	1 0.05	7.9 ND 0.2	ND 0.24	ND 0.24	ND 0.21	ND 0.22	ND 0.16	ND ND 0.23	7.3 ND 0.21
Cadmium Calcium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5 1	ND 28	ND 32	ND 29	ND 29	ND 30	ND 24	ND 30	ND 25
Chromium Copper Iron	EPA 200.8 EPA 200.8 EPA 200.7	ug/L ug/L mg/L	1 2 0.02	ND 20 0.06	ND 18 0.022	6.3 0.024	ND ND ND	ND ND ND	ND 25 0.061	ND ND 0.02	ND 4 ND
Lead Magnesium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5 0.1	ND 9.2	ND 9.5	ND 8.9	ND 9.3	ND 9.7	ND 9.6	ND 9.8	ND 8
Manganese Mercury	EPA 200.8 EPA 245.1	ug/L ug/L	0.2	18 ND	24 ND	11 ND	6.6 ND	6.6 ND	17 ND	ND ND	3.2 ND
Potassium Seleniun Silica	EPA 200.7 EPA 200.8 EPA 200.7	mg/L ug/L mg/L	5 0.5	18 ND 41	16 ND 42	15 ND 40	15 ND 38	16 ND 40	16 ND 39	15 ND 42	14 ND 29
Silicon Silver	EPA 200.7 EPA 200.8	mg/L ug/L	0.2	19 ND	19 ND	19 ND	18 ND	19 ND	18 ND	20 ND	14 ND
Sodium Thallium Zinc	EPA 200.7 EPA 200.8 EPA 200.8	mg/L ug/L	1 1 20	51 ND 45	55 ND 84	52 ND 110 J+	53 ND 51 J+	56 ND 51 J+	46 ND 79	54 ND ND	49 ND 67
METALS (TOTAL) Aluminum	EPA 200.8	ug/L ug/L	20	290			- J1 J7		440		
Antimony Arsenic	EPA 200.8 EPA 200.8	ug/L ug/L	1 1	ND 1.2					ND (<5) 2		**
Barium Beryllium Boron	EPA 200.8 EPA 200.8 EPA 200.7	ug/L ug/L mg/L	2 1 0.05	40 ND 0.25					27 ND 0.2		
Cadmium Calcium	EPA 200.7 EPA 200.7	ug/L mg/L	0.5	ND 40					5.8 33		
Chromium Copper	EPA 200.8 EPA 200.8	ug/L ug/L	1 2	1.5 87					2 110		**
Iron Lead Magnesium	EPA 200.7 EPA 200.8 EPA 200.7	mg/L ug/L mg/L	0.02 0.5 0.1	0.44 1.4 10			**		7.5 11		-
Manganese Mercury	EPA 200.8 EPA 245.1	ug/L ug/L	2 0.2	38 ND	==		==		35 0.2		
Nickel Potassium	EPA 200.8 EPA 200.7	ug/L mg/L	5 1 5	ND 18		-			ND 19	**	-
Selenium Silica Silver	EPA 200.8 EPA 200.7 EPA 200.8	ug/L mg/L ug/L	0.5	ND 43 ND					ND 41 ND (<2.5)		
Sodium Thallium	EPA 200.7 EPA 200.8	mg/L ug/L	1 1	52 ND (<10)				-	49 ND		-
Zinc RESIDUAL CHEMICALS N-Nitroso dimethylamine (NDMA)	EPA 200.8	ug/L ng/L	20	160 J+	 ND	ND	ND	 ND	360 ND UJ	ND	 ND
1,4-Dioxane 1,7-Dimethylxanthine	EPA 522 LC-MS-MS	ug/L ng/L	0.07 10	0.46 J- ND	0.72 36	0.77 ND	0.6 22	0.54 19	0.71 1100	0.73 ND	0.48 ND
2,4-D (Method LC-MS-MS) 4-n-Octylphenol diethoxylate	LC-MS-MS LC-MS-MS-WW	ng/L ng/L	5 100	ND 110	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-n-Octylphenol monoethoxylate 4-nonylphenol - semi quantitative 4-para-Nonylphenol	LC-MS-MS-WW LC-MS-MS LC-MS-MS-WW	ng/L ng/L ng/L	100 100 100	ND 1600 J 240	ND 180 J ND	ND UJ ND UJ	ND UJ ND UJ	ND UJ ND UJ	ND 3600 J	ND UJ	ND UJ
4-tert-octylphenol Acesulfame-K	LC-MS-MS LC-MS-MS	ng/L ng/L	50 20	ND 24000	ND 220	ND 220	ND 550	ND 560	ND 54000	ND 850	ND 540
Acetaminophen Albuterol Amoxicillin (semi-quantitative)	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	42000 12 22000 I	7 ND	ND ND	ND ND 33 J	ND ND	120000 ND 49000 I	ND ND	ND ND ND UJ
Amoxicillin (semi-quantitative) Andorostenedione Atenolol	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	20 5 5	22000 J 28 640	ND UJ ND 36 J-	ND UJ ND 27 J-	33 J ND 9.4 J	ND UJ ND 6.3 J	49000 J 160 3000	ND UJ ND 110	ND UJ ND 37
Atrazine (Method LC-MS-MS) Azithromycin	LC-MS-MS LC-MS-MS	ng/L ng/L	5 20	ND	ND	ND 	ND	ND	ND	ND	ND
Bendroflumethiazide Bezafibrate Bisphenol A	LC-MS-MS LC-MS-MS LC-MS-MS-WW	ng/L ng/L ng/L	5 5 100	ND ND (<100)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
BPA (Bisphenol A, low detection limit) Bromacil (Method LC-MS-MS)	LC-MS-MS LC-MS-MS	ng/L ng/L	10 5	ND 14	ND ND	ND ND	ND 14 J	ND 5.8 J	910 ND	ND ND	ND ND
Butalbital Butylparben	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND 12	11 ND	ND ND	7.8 ND	7.8 ND	8.4 42	7.3 ND	8.5 ND
Caffeine Carbadox Carbamazepine	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5 5 5	68000 ND 250	ND R 200	ND R 170	5.7 ND 260	ND ND 230	150000 ND 580	ND ND 300	ND ND 310
Carisoprodol Chloridazon	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND	10 9.2	8.2 ND UJ	15 5.9	16 ND	ND ND	110 ND	16 ND
Chloramphenicol Chlorotoluron Cimetidine	LC-MS-MS LC-MS-MS	ng/L ng/L	10 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cimetidine Clofibric Acid Cotinine	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5 5 10	ND 1900	ND UJ ND 17	ND UJ ND 15	ND UJ ND 15	ND UJ ND 13	ND 3600	ND UJ ND 23	ND UJ ND 17
Cyanazine DACT	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND	6 12	ND ND	5.1 7	ND ND	5.6 ND	ND ND	ND ND
DEA DEET Dehydronifedipine	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	ND 210	ND 11	ND 15	13 18	20 16	ND ND	ND 140	ND 16
Dehydronifedipine DIA Diazepam	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5 5 5	5.4 ND 7.5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND 9.3	ND ND ND
Diclofenac Diuron	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND 5.2	ND 6.5	ND 7.3	ND 12	ND 11	170 ND	ND ND	ND ND
Dilantin Diltiazem	LC-MS-MS LC-MS-MS	ng/L ng/L	20 5	170 120	92 18	86 ND	98 ND	ND ND	ND 150	72 ND	66 ND
Erythromycin Estradiol - 17 beta	LC-MS-MS LC-MS-MS LC-MS-MS-WW	ng/L ng/L ng/L	10 5 0.5	100 ND 3.2	16 J+ ND ND	10 J+ ND ND	ND ND ND	ND ND ND	37 ND ND	ND ND ND	ND ND ND
Estradiol - 17 beta (low detection)	LC-MS-MS	ng/L	0.5	ND	ND	ND	ND	ND	35	ND	ND
Estrone Estrone (low detection)	LC-MS-MS-WW	ng/L	0.5	1.1	ND	ND	0.77 J	1 J	ND	ND	0.75
Estrone			0.5 5 0.5 20	1.1 ND ND 59	ND ND ND ND	ND ND ND ND	0.77 J ND ND ND	1 J ND ND ND	ND ND ND 340	ND ND ND ND	0.75 ND ND ND

				Martin Way Reclaime	d Water Plant (MWRW	P)					
				Sampling Event 1 (11) MWRWP-WASTEWATER	/12/2014) MWRWP-RECLAIMED	MWRWP- PRE-WETLANDS	MWRWP- POST-WETLANDS	DUP MWRWP- POST-WETLANDS	Sampling Event 2 (02/ MWRWP-WASTEWATER	17/2015) MWRWP-RECLAIMED	MWRWP- POST-WETLANDS
ANALYTE Fluoxetine	METHOD LC-MS-MS	UNIT ng/L	MRL 10	Result Qual	Result Qual 65 J+	Result Qual 72 J+	Result Qual 15	Result Qual 17	Result Qual	Result Qual 62	Result Qual 27
Gemfibrozil Ibuprofen	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	1100 460	94 ND	ND ND	14 J ND	33 J ND	3700 21000	ND ND	8.7 ND
lohexal lopromide	LC-MS-MS LC-MS-MS	ng/L ng/L	10 5	1800 17	9.1	500 ND	230 J 35	300 J 34	15000 22	410 61	760 57
Isobutylparaben Isoproturon	LC-MS-MS LC-MS-MS	ng/L ng/L	100	ND ND	ND ND	ND ND	ND ND	ND ND	41 ND	ND ND	ND ND
Ketoprofen Ketorolac	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 7.9	ND 14	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Lidocaine Lincomycin	LC-MS-MS LC-MS-MS	ng/L ng/L	10	58 ND	55 ND	ND ND	ND J	9.1 J ND	690 1000	ND ND	ND ND
Linuron Lopressor	LC-MS-MS LC-MS-MS	ng/L ng/L	5 20	ND 370	ND 280	ND 130	ND 46	ND 45	ND ND	ND 190	ND ND
Meclofenamic Acid Meprobamate	LC-MS-MS LC-MS-MS	ng/L ng/L	5	27 55	ND 31	ND 19	ND 43	ND 40	ND 68	ND 60	ND 42
Metazachlor Metformin Methylparaben	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L	5 10 20	ND R 29000 ND	ND R 190 ND	ND R 200 ND	ND R 200 ND	ND R 190 ND	ND R 6800 87	ND R 61 ND	ND R 31 ND
Naproxen Nifedipine	LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	10	10 58 J	25 20 J	ND ND UJ	ND ND UJ	18 ND UJ	5200 64 J	ND ND UJ	ND ND UJ
Nonylphenol Diethoxylate Nonylphenol Monoethoxylate	LC-MS-MS-WW LC-MS-MS-WW	ng/L ng/L	100 100	870 ND	ND ND	ND ND	ND ND	ND ND	350 ND	ND ND	ND ND
Norethisterone Octylphenol	LC-MS-MS LC-MS-MS-WW	ng/L ng/L	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND
Oxolinic acid Pentoxifylline	LC-MS-MS LC-MS-MS	ng/L ng/L	10	190 ND	36 ND	ND ND	64 ND	57 ND	ND 820	ND 7.6	ND ND
Phenazone Primidone	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 33	ND 64 J+	ND 170 J+	ND 170	ND 140	ND 280	ND 190	ND 140
Progesterone Propazine	LC-MS-MS LC-MS-MS	ng/L ng/L	5	16 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Propylparaben Quinoline	LC-MS-MS LC-MS-MS	ng/L ng/L	5	970 32	ND 7.8	ND ND	ND 7.8	ND 6.9	2700 270	ND ND	ND ND
Simazine (Method LC-MS-MS) Sucralose	LC-MS-MS LC-MS-MS	ng/L ng/L	5 100	11 100000	6.1 52000	ND 28000	7.7 33000 J	6.3 54000 J	ND 62000	ND 35000	ND 36000
Sulfachloropyridazine Sulfadiazine	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND ND	ND UJ	ND UJ ND	ND ND	ND ND	ND ND	ND ND	ND ND
Sulfadimethoxine Sulfamerazine	LC-MS-MS LC-MS-MS	ng/L ng/L	5	14 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Sulfamethazine	LC-MS-MS	ng/L	5	ND	ND	ND	ND	ND	ND	ND	ND
Sulfamethizole Sulfamethoxazole Sulfathiazole	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/I	5	ND 1800 ND	ND 320 ND	ND 21 ND	ND 50 J ND	ND 36 J ND	ND 2200 ND	ND 19 ND	ND 38 ND
TCEP TCPP	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/I	10	110 1000	39 J- 240	74 J- 310	66 J 450	46 J 370	47 1000	120 560	120 310
TDCPP Theobromine	LC-MS-MS LC-MS-MS	ng/L ng/L ng/I	100	360 1100	190 ND	210 ND	210 J	170 J ND	360 27000	230 66	180 ND
Theobromine Thiabendazole Testosterone	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L	5	130	200 ND	ND 17 ND	600 J ND	ND 480 J ND	27000 ND ND	66 ND 6.1	ND ND 7.4
Testosterone Triclocarban Triclosan	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/I	5 10	15 ND 570	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND 1100	ND ND	ND ND
Trimethoprim Warfarin	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5	180 ND	8.3 ND	ND ND	ND ND ND	ND ND ND	530 17	ND ND	ND ND ND
warrarın PFCs Perfluoro butanoic acid- PFBA	MWH PFC	ng/L	10	ND ND	ND ND	ND ND	ND ND	ND ND	32	ND ND	ND ND
Perfluoro butanoic acid- PFBA Perfluoro octanesulfonate-PFOS Perfluoro octanesulfonic acid - PFOS	MWH PFC MWH PFC	ng/L	5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND
Perfluoro octanesulfonic acid - PFOS Perfluoro octanoic acid - PFOA Perfluoro-1-butanesulfonate	MWH PFC MWH PFC	ng/L ng/L ng/L	5	5.5 J ND	16 J ND	12 ND	18 5.6	22 5.5	ND ND	20 ND	16 ND
Perfluoro-1-butanesulfonic acid Perfluoro-1-hexanesulfonate	MWH PFC MWH PFC	ng/L ng/L	5	ND ND	ND ND	ND ND	5 ND	5.7 ND	ND ND	ND ND	ND ND
Perfluoro-1-hexanesulfonic acid Perfluoro-n-decanoic acid	MWH PFC MWH PFC	ng/L	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoro-n-heptanoic acid Perfluoro-n-heptanoic acid Perfluoro-n-hexanoic acid	MWH PFC MWH PFC	ng/L ng/L	5	ND ND 14	ND ND 23	ND 18	ND 43	ND 41	ND 5.2	ND 81	ND 71
Perfluoro-n-nonanoic acid	MWH PFC	ng/L ng/L	5	ND 74	ND 29	ND 13	ND 31	ND 45	ND	ND	ND
Perfluoropentanoic acid PBDEs/EDB/DBCP	MWH PFC	ng/L			-1						
BDE-100 BDE-153	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5	ND UJ	ND UJ	ND ND	ND ND	ND UJ	-		
BDE-154 BDE-183	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5 5 100	ND UJ	ND UJ ND	ND ND ND	ND ND ND	ND UJ ND	=		
BDE-209 BDE-28	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5	ND UJ	ND UJ ND	ND	ND	ND UJ ND	-		
BDE-47 BDE-99	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5	ND UJ	ND ND	ND ND	ND ND	ND ND	-		
Bifenthrin cis-Permethrin	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	5	7.8 J-	ND ND	ND ND	ND ND	ND ND	-		
Fipronil Total Permethrin	GC-QQQ PBDE GC-QQQ PBDE	ng/L ng/L	10	2.7 J- 18 J-	51 ND	ND ND	3.1 ND	3.5 ND	-		
trans-Permethrin Dibromochloropropane (DBCP)	GC-QQQ PBDE EPA 551.1	ng/L ug/L	0.01	9.8 J- ND	ND 0.011	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylene Dibromide (EDB) DBPs	EPA 551.1	ug/L	0.01	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform (Trichloromethane) Bromoform	EPA 524.2 EPA 524.2	ug/L ug/L	0.5	1.3 ND	15 ND	38 ND	10 ND	9.4 ND	1.3 ND	12 ND	14 ND
Bromodichloromethane Chlorodibromomethane	EPA 524.2 EPA 524.2	ug/L ug/L	0.5	ND ND	4.5 0.87	2	1.7 ND	1.6 ND	ND ND	3.9 0.55	2.3 ND
Total Trihalomethanes (TTHM) Bromochloroacetic acid	EPA 524.2 SM 6251B	ug/L ug/L	0.5	1.3 ND	20	54 3.5	ND	ND ND	1.3 ND	16 3.5	ND
Dibromoacetic acid Dichloroacetic acid	SM 6251B SM 6251B SM 6251B	ug/L ug/L	1 1 1	ND 2.8 ND	ND 17 ND	ND 20 ND	ND ND ND	ND ND ND	ND 1.3 ND	ND 18 ND	ND ND
Monobromoacetic acid Monochloroacetic acid	SM 6251B SM 6251B SM 6251B	ug/L ug/L	2 2	2.4 11	3.6 39	2.2 50	ND ND	ND ND	ND ND 4.7	ND	ND ND
Total Haloacetic Acids (HAA5) Trichloroacetic acid	SM 6251B	ug/L ug/L	1	5.9	18	28	ND ND	ND ND	3.4	41 23	ND ND
PCBs PCB 1016 Aroclor	EPA 505	ug/L	0.08	ND UJ	ND ND	ND	ND	ND ND			
PCB 1221 Aroclor PCB 1232 Aroclor	EPA 505 EPA 505	ug/L ug/L	0.1	ND UJ	ND ND	ND ND	ND ND	ND ND	-		
PCB 1242 Aroclor PCB 1248 Aroclor	EPA 505 EPA 505	ug/L ug/L	0.1	ND UJ	ND ND	ND ND	ND ND	ND ND	-		
PCB 1254 Aroclor PCB 1260 Aroclor	EPA 505 EPA 505	ug/L ug/L	0.1	ND UJ	ND ND	ND ND	ND ND	ND ND	-		**
Total PCBs PESTICIDES AND HERBICIDES Alachlor (Alanay)	EPA 505	ug/L	0.1	ND UJ	ND ND	ND ND	ND ND	ND NO	-	-	
Alachlor (Alanex) Aldrin (EPA Method 505) Chlordane	EPA 505 EPA 505	ug/L ug/L	0.1 0.01	ND UJ ND UJ	ND ND	ND ND	ND ND	ND ND			
Chlordane Dieldrin (EPA Method 505) Endrin (EPA Method 505)	EPA 505 EPA 505 EPA 505	ug/L ug/L	0.1 0.01 0.01	ND UJ ND UJ ND UJ	ND ND ND	ND ND ND	ND ND ND	ND ND ND	-		-
Heptachlor (EPA Method 505)		ug/L	0.01	ND UJ	ND ND	ND ND	ND ND	ND ND			
ILIENTACHIOL EDUXIDE	EPA 505 EPA 505	ug/L ug/L	0.01			ND		ND			
Heptachlor Epoxide Lindane (gamma-BHC) Methoxychlor (EPA Method 505)	EPA 505 EPA 505	ug/L ug/L	0.01 0.01	ND UJ ND UJ	ND ND	ND ND ND	ND ND	ND ND ND		-	
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene	EPA 505 EPA 505 EPA 505 EPA 505	ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5	ND UJ ND UJ ND UJ ND UJ	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND			
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex)	EPA 505 EPA 505 EPA 505	ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05	ND UJ ND UJ ND UJ	ND ND ND	ND ND	ND ND ND	ND ND			==
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T	EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4 EPA 515.4	ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2	ND UJ ND UJ ND UJ ND UJ ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND			
Undane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (slivex) 2,4-D (EPA Method 515.4) 2,4-DB	EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4 EPA 515.4 EPA 515.4 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 5	ND	ND N	ND	ND N	ND			
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silwex) 2,4-0 (EPA Method 515.4) 2,4-0B 3,5-Dichlorobenzoic acid Acifluorfen	EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 5 2 0.5 0.2	ND	ND N	ND N	ND N	ND N			
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (EPA Method 515.4) 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba	EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 5 2 0.5 0.2 0.5 0.5	ND	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND N	ND N			
Lindane (gamma-BHC) Methosychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TF (Silvex) 2,4-D (EPA Method 515.4) 2,4-D B 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichlorprop	EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 5 2 0.5 0.2 0.5 0.1 1	ND	ND N	ND N	ND N	ND N			10 10 10 10 10 10 10 10 10 10 10 10 10 1
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-0 (EPA Method 515.4) 2,4-0 B 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichloroprop Dinoseb	EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 2 0.5 0.2 0.5 0.1 1 0.5 0.05	ND	ND N	ND N	ND N	ND N			10 10 10 10 10 10 10 10 10 10 10 10 10 1
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (EPA Method 515.4) 2,4-D (EPA Method 515.4) 3,5-Dichlorobenzoic acid Acifluorien Bentazon Dicamba Dalapon Dichlorprop Dinoseb Pentachlorophenol (EPA Method 515.4) Picloram	EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.05 0.5 0.2 0.2 5 2 0.5 0.2 0.5 0.1 1 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ND	ND	NID	NID	ND N			
Lindane (gamma-BHC) Methoxychlor (FPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (FPA Method 515.4) 2,4-D (FPA Method 515.4) 2,4-D (FPA Method 515.4) 2,4-D (FPA Method 515.4) 2,6-D (FPA Method 515.4) Pacifluorien Bentazon Dicamba Dalapon Dichlorprop Dinchlorprop Dinoseb Pentachlorophenol (EPA Method 515.4) Pelcloram Tot DCPA Mono&Diacid Degradate VOCS 1,1,1,2-Tetrachloroethane	EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ND	ND ND ND ND ND ND ND ND	ND N	NID	ND N	 ND	 	
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (EPA Method 515.4) 2,4-DB 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichlorprop Dinoseb Pentachlorophenol (EPA Method 515.4) Picloram Tot DCPA Mono&Diacid Degradate VOCS 1,1,1,2-Tertachloroethane 1,1,1,Trichloroethane 1,1,1,2-Tertachloroethane	EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 5 0.5 0.5 0.5 0.1 1 0.5 0.2 0.0 0.1 0.5 0.2 0.0 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND ND ND ND ND ND ND ND	ND N	NID	ND N	 ND ND	 ND ND	
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (EPA Method 515.4) 2,4-D (EPA Method 515.4) 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichorprop Dinoseb Pentachlorophenol (EPA Method 515.4) Picloram Tot DCPA Mono&Diacid Degradate VOCS 1,1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Tertarchloroethane 1,1,1-Tichloroethane 1,1,1-Dichloroethane	EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 505 EPA 515.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.2 0.2 0.2 0.5 0.5 0.5 0.1 1 0.5 0.2 0.5 0.1 1 0.5 0.5 0.1 1 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5	ND	ND ND ND ND ND ND ND ND	ND N	NID	NID			
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Slivex) 2,4-D (EPA Method 515.4) Pentachoropheno (EPA Method 515.4) Pictoram Tot DCPA Method 515.4) Pictoram Tot DCPA Mono&Diacid Degradate VOCs 1,1,1,2-Tetrachloroethane 1,1,1,2-Trichloroethane 1,1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-3-Trichloropene	EPA 50S EPA 51S.4 EPA 528.2 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 5 2 0.5 0.5 0.1 1 0.5 0.2 0.04 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND ND ND ND ND ND ND ND	ND N	ND N	NID			
Lindane (gamma-BHC) Methoxychlor (FPA Method 505) Toxaphene 2,4,5-T7 2,4,5-TP (Silvex) 2,4-D (FPA Method 515.4) Palapon Dicamba Dalapon Dichiorprop Dichiorprop Dichiorprop Dichiorprop Dichiorprop Dichiorprop Dichiorprop Dichiorprop Dichiorprop Lichiorprop Li,1,2-Tetrachioroethane 1,1,1,2-Tetrachioroethane 1,1,2-Trichioroethane 1,1-Dichioroethane 1,1-Dichioroethylene 1,1-Dichioroethylene 1,1-Dichioroethylene 1,1-Dichioroethylene 1,1-Dichioroethylene 1,1-Dichioroethylene 1,1-Dichioroethylene 1,2-3-Trichiorobeznee	EPA 505 EPA 515.4 EPA 516.4	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 0.5 0.5 0.0 0.5 0.0 0.5 0.5 0.5 0.5	ND	ND	ND N	NID	NID			
Lindane (gamma-BHC) Methocychlor (EPA Method 505) Toxaphene 2,4,5-77 Z,4,5-77 (Silvex) 2,4-0-18 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichlororpo Dichlororchlorocthane 1,1,1-7:Trichlorocthane 1,1,2-7:Trichlorocthylore 1,1-Dichlorocthylore 1,1-Dichlorocthylore 1,2-3-Trichloropenee 1,2-3-Trichloropenee 1,2-4-Trichlorochenee 1,2-4-Trichlorochenee 1,2-4-Trichlorochenee 1,2-4-Trichlorochenee 1,2-4-Trichlorochenee 1,2-Dichlorochenee 1,2-Dichloropopane	EPA 505 EPA 515.4 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	NID	ND	ND N	NID	NID	*** *** *** *** *** *** *** *** *** **		
Lindane (gamma-BHC) Methooychlor (FPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (FPA Method 515.4) Palapon Dicamba Dalapon Dichlorprop Dichlorprop Dichlorprop Dichlorprop Dichlorprop Dichlorprop Tot DCPA Mono&Diacid Degradate VOCS 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylore 1,1-Dichloroethylore 1,1-Dichloroethylore 1,1-Dichloroethylore 1,1-Dichloroethylore 1,2-Trichloroethylore 1,2-Trichloroethene 1,2-Trichloroethene 1,2-Trichloroethene 1,2-Trichloroethene 1,2-Trichloroethene 1,2-Trichloroethene 1,2-Trichloroethene 1,2-Trichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Si-Timethylbenzene 1,3-Si-Timethylbenzene 1,3-Si-Timethylbenzene 1,3-Si-Timethylbenzene 1,3-Si-Timethylbenzene 1,3-Si-Timethylbenzene 1,3-Si-Timethylbenzene	EPA 505 EPA 515.4 EPA 526.2 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 0.2 0.5 0.1 1 0.5 0.2 0.04 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND	ND N	NID NID	NID	ND		
Lindane (gamma-BHC) Methosychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (EPA Method 515.4) 2,4-D (EPA Method 515.4) 2,4-D (EPA Method 515.4) 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichorprop Dinoseb Pentachlorophenol (EPA Method 515.4) Picloram Tot DCPA Mono&Diacid Degradate VOCs 1,1,1,2-Tetrachloroethane 1,1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropone 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,3-Trichloropene 1,2,4-Trimethylbenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 2-Butanone (MEK)	EPA 505 EPA 515.4 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 0.2 0.5 0.1 1 0.5 0.5 0.2 0.0 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND	NID	NID	ND N	ND N	ND	
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-D (EPA Method 515.4) Pentachoropheno (EPA Method 515.4) Pentachoropheno (EPA Method 515.4) Pentachoropheno (EPA Method 515.4) Pelcoram Tot DCPA Mono&Diacid Degradate VOCs 1,1,1,2-Tetrachloroethane 1,1,1,2-Trichloroethane 1,1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorophene 1,2,3-Trichlorophene 1,2,3-Trichlorophene 1,2-Dichloropropane 1,2-Perimethylbenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-S-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 2-Dichloropropane 2-Butanone (MEK) 2-Hexanone 2-Butanone (MEK) 2-Hexanone 2-Butanone (MEK) 2-Hexanone	EPA 505 EPA 515.4 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 0.5 0.5 0.5 0.1 1 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND	ND N	NID	NID	ND N		
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-T 2,4,5-TP (Silvex) 2,4-0-TP (Silvex) 2,4-0-TP (Silvex) 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichloroprop Dinoseb Pentachlorophenol (EPA Method 515.4) Picloram Tot DCPA Mono&Diacid Degradate VOCs 1,1,1,2-Tetrachloroethane 1,1,1,2-Trichloroethane 1,1,1,2-Trichloroethane 1,1,1,2-Trichloroethane 1,1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethane 1,1,2-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,5-Trimethylbenzene 1,2-Dichloropropane 1,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2,2-Dichloropropane 2-Butanone (MEK) 2-Hexanone 4-Methyl-2-Pentanone (MIBK) Benzene	EPA 505 EPA 515.4 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.2 5 0.5 0.5 0.5 0.1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND	ND N	ND N	NID	ND N		
Lindane (gamma-BHC) Methosychlor (EPA Method 505) Toxaphene 2,4,5-17 2,4,5-17 (Silvex) 2,4-0 (EPA Method 515.4) 2,4-0 (EPA Method 515.4) 2,4-0 (Bandard Silver) 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichloroprop Dinoseb Pentachlorophenol (EPA Method 515.4) Picloram Tot DCPA Mono&Diacid Degradate VOCs 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethopene 1,2,3-Trichloroethylene 1,2-3-Trichloroethylene 1,2-3-Trichloroethylenene 1,2-3-Trichloroethylenene 1,2-3-Trichloroethylenene 1,3-5-Trichloroethylenene 1,3-5-Trichloroethylenenene 1,3-5-Trichloroethylenenenenenenenenenenenenenenenenenenen	EPA 505 EPA 515.4 EPA 526.2 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	NID	ND	ND N	NID	NID	ND N		
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-17 2,4,5-17 (Silvex) 2,4-9 (EPA Method 515.4) 2,4-9 (EPA Method 515.4) 2,4-9 (EPA Method 515.4) 2,4-9 (EPA Method 515.4) 2,4-10 (EPA Method 515.4) 2,4-10 (EPA Method 515.4) 2,4-10 (EPA Method 515.4) 2,1-10 (EPA M	EPA 505 EPA 515.4 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.2 0.5 0.1 1 0.5 0.5 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	NID	ND	ND N	NID	NID			
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-7 Toxaphene 2,4,5-7 2,4-5-17 (Silvex) 2,4-0 (EPA Method 515.4) 2,6-10 (EPA Method 515.4) 2,1-10 (EPA Method 515.4	EPA 505 EPA 515.4 EPA 526.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.2 0.5 0.1 1 0.5 0.2 0.04 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND	ND N	NID	NID	*** *** *** *** *** *** *** *** *** **		
Lindane (gamma-BHC) Methoxychlor (EPA Method 505) Toxaphene 2,4,5-17 2,4,5-17 (Silvex) 2,4-0 (EPA Method 515.4) Poliapon Dichlorpon Dichlor	EPA 505 EPA 515.4 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 0.1 1 0.5 0.5 0.2 0.04 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND	ND N	NID	NID	ND N		
Lindane (gamma-BHC) Methosychlor (EPA Method 505) Toxaphene 2,45-77 2,45-77 (Silvex) 2,4-9 (EPA Method 515.4) 2,4-9 (EPA Method 515.4) 2,4-9 (Bandard Silver) 3,5-Dichlorobenzoic acid Acifluorfen Bentazon Dicamba Dalapon Dichloroprop Dinoseb Pentachlorophenol (EPA Method 515.4) Picloram Tot DCPA Monos Diacid Degradate VOCs 1,1,1-7richloroethane 1,1,1-7richloroethane 1,1,1-7richloroethane 1,1,2-7richloroethane 1,1,2-7richloroethane 1,1,2-7richloroethane 1,1-Dichloroethylene 1,2-3-Trichloroethylene 1,2-Dichlorogropane 1,2-Dichlorogropane 1,2-Dichlorogropane 1,3-5-Trimethylbenzene 1,3-Dichlorogropane 2-Dichloropropane 2-Butanone (MeK) 2-Hexanone 8-Memorethane 8-Memorethane 8-momomethane 9-momomethane 9-momome	EPA 505 EPA 515.4 EPA 524.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.01 0.05 0.5 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ND	ND	ND N	NID	NID	ND N		

		Sampling Event 1 (11/	d Water Plant (MWRWP 12/2014)	,			Sampling Event 2 (02/	17/2015)	
				MWRWP-	MWRWP-	DUP MWRWP-			MWRWP-
		MWRWP-WASTEWATER	MWRWP-RECLAIMED	PRE-WETLANDS	POST-WETLANDS	POST-WETLANDS	MWRWP-WASTEWATER	MWRWP-RECLAIMED	POST-WETLANDS
HOD UNIT 524.2 ug/L	MRL 0.5	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qua
524.2 ug/L 524.2 ug/L	3 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
524.2 ug/L 524.2 ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
524.2 ug/L	0.5	ND	ND	ND	ND	ND	ND	ND	ND
524.2 ug/L 524.2 ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
524.2 ug/L 524.2 ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
524.2 ug/L	0.5	ND	ND	ND	ND	ND	ND	ND	ND ND
524.2 ug/L	0.5	ND	ND	ND	ND	ND	ND	ND	ND
	0.5	0.59 0.54	ND ND	ND ND	ND ND	ND ND	ND 1.9	ND ND	ND ND
	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
524.2 ug/L	3	ND	ND	ND	ND	ND	ND	ND	ND ND
524.2 ug/L	0.5	ND	ND	ND	ND	ND	ND	ND	ND
524.2 ug/L	0.5	8	ND	ND	ND	ND	14	ND	ND ND
									ND ND
524.2 ug/L	0.5	ND	ND	ND	ND	ND	ND	ND	ND ND
524.2 ug/L	0.5	ND	ND	ND	ND	ND	ND	ND	ND
524.2 ug/L	0.5	ND	ND	ND	ND	ND	ND	ND	ND ND
524.2 ug/L	0.3	ND	ND	ND	ND	ND	ND	ND	ND
	0.1 0.1	ND (<0.2) ND (<0.2)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND	==		
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND			
	0.1 0.1	ND (<0.2) ND (<0.2)	ND ND	ND ND	ND ND	ND ND			**
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND			
525.2 ug/L	0.05	ND (<0.1)	ND	ND	ND	ND	**		==
525.2 ug/L	0.05	ND (<0.1)	ND	ND	ND	ND			
	0.02 0.05	ND (<0.04) ND (<0.1)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.05	ND (<0.1)	ND ND	ND ND	ND ND	ND ND		-	
525.2 ug/L	0.02	ND (<0.04)	ND	ND	ND	ND	**		
525.2 ug/L	0.05	ND (<0.04)	ND	ND	ND	ND			
	0.1	ND (<0.2) ND (<0.4)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.05	ND (<0.1)	ND	ND	ND	ND			**
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND			
	0.1	ND (<0.2) ND (<0.2)	ND ND	ND ND	ND ND	ND ND			
	0.05	ND (<0.1) ND (<0.04)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND			**
525.2 ug/L	0.6	2.6 J+	ND ND	ND ND	ND ND	ND ND			
-0/-	0.1	ND (<0.2) ND (<0.1)	ND ND	ND ND	ND ND	ND ND			
	0.05	ND (<0.1) ND (<0.02)	ND ND	ND ND	ND ND	ND ND			==
525.2 ug/L	0.5	6.6	ND	ND	ND	ND			
525.2 ug/L	0.5	ND (<0.1)	ND	ND	ND	ND			
	0.1	ND (<2) ND (<0.2)	ND ND	ND ND	ND ND	ND ND			
	0.1	ND (<0.2) ND (<0.2)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND			
525.2 ug/L	0.1	ND (<0.2)	ND UJ	ND UJ	ND	ND			-
	0.1	ND (<0.2) ND (<0.2)	ND ND	ND ND	ND ND	ND ND			
-	0.05 0.05	ND (<0.1) ND (<0.1)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.01	ND (<0.02)	ND ND	ND ND	ND ND	ND ND	-		**
525.2 ug/L	0.05	ND (<0.1)	ND	ND	ND	ND	**		
525.2 ug/L	0.05	ND (<0.1)	ND	ND	ND	ND			
525.2 ug/L	0.5 0.04	ND (<1) ND (<0.08)	ND ND	ND ND	ND ND	ND ND	-		-
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND	-		
525.2 ug/L	0.05	ND (<0.1)	ND	ND	ND	ND			
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND	-		-
	0.5 0.1	ND (<0.1) ND (<0.2)	ND ND	ND ND	ND ND	ND ND	-		**
525.2 ug/L	0.1	ND (<0.2) ND (<0.08)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.1	ND (<0.2)	ND	ND	ND	ND			
525.2 ug/L 525.2 ug/L	0.04 0.05	ND (<0.08) ND (<0.1)	ND ND	ND ND	ND ND	ND ND	-		
525.2 ug/L 525.2 ug/L	0.05 0.05	ND (<0.1) ND (<0.1)	ND ND	ND ND	ND ND	ND ND	-		-
	0.1	ND (<0.2) ND (<0.2)	ND ND	ND ND	ND ND	ND ND			
525.2 ug/L	0.1	ND (<0.4)	ND	ND	ND	ND			-
525.2 ug/L 525.2 ug/L			ND	ND	ND	ND			
525.2 ug/L	0.02 0.05	ND (<0.04) ND (<0.1)	ND ND	ND	ND	ND			••
	524.2 ug/L 525.2 ug/L 525.2 ug/L 525.2 ug/L 525.2 ug/L </th <th> S242</th> <th> S24.2 ug/L 0.5 ND </th> <th> 2342</th> <th>3242</th> <th> 2342</th> <th> 1982 1997</th> <th> SAMP</th> <th> Section Sect</th>	S242	S24.2 ug/L 0.5 ND	2342	3242	2342	1982 1997	SAMP	Section Sect

					d Water Plant (MWRW	Р)	Compling Event 4 /10/	07/201E\		
				Sampling Event 3 (05/		MWRWP-	Sampling Event 4 (10/		MWRWP-	MWRWP-
				MWRWP-WASTEWATER	MWRWP-RECLAIMED	POST-WETLANDS	MWRWP-WASTEWATER	MWRWP-RECLAIMED	PRE-WETLANDS	POST-WETLANDS
ANALYTE FIELD PARAMETERS	METHOD	UNIT	MRL	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
pH Temperature Specific Conductance		units °C μS/cm	N/A N/A N/A	7.62 17.9 922	7.03 20.3 532	7.01 17.1 508	7.62 19.2 802	7.21 19.9 761.5	7.15 20.3 532.6	6.78 15.2 540.4
Oxidation Reduction Potential (ORP) Dissolved Oxygen		mV mg/L	N/A N/A	76 1.9	365 4.2	163 9.3	10.9	346.6 5.35	254 5.03	124.4 1.73
Free CI Total CI		mg/L mg/L	N/A N/A				0	0.2 0.6	0 0.4	0
LABORATORY GENERAL WATER QUALITY PARA Alkalinity	SM 2320B	mg/L	2	330	120	120	270	120	120	140
Alkalinity (as HCO3, calc) Carbonate	SM2330B SM2330B	mg/L mg/L	2	400 ND	150 ND	150 ND	320 ND	150 ND	150 ND	160 ND
Hydroxide Carbon Dioxide Caccific Conductors	SM2330B SM4500-CO2-D SM2510B	mg/L mg/L	2 2 2	ND 21 960	ND 4.9 540	3.9 500	ND ND 800	ND ND 530	ND ND 520	ND ND 540
Specific Conductance Turbidity WASTEWATER/RECLAIMED WATER PARAMETI	Default	umho/cm NTU	0	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Total Suspended Solids Total Dissolved Solid	SM 2540D E160.1/SM2540C	mg/L mg/L	10 10	180 370	ND 350	ND 320	180 330	ND 340	ND 330	ND 340
Total Organic Carbon Chemical Oxygen Demand	SM5310C/E415.3 EPA 410.4	mg/L mg/L	0.3 5	93 550	6.4 13	6.4 14	110 120	5 12	5 11	5.3 11
Dissolved Organic Carbon - Final Dissolved Organic Carbon - Initial	Allgeier, 1996 Allgeier, 1996	mg/L mg/L	0.3	28 42	6.7 6.5 J+	9.2 6.6 J+	28 56	4.6 J+ 5.1 J+	6.8 5.2 J+	5.3 4.9 J+
Biochemical Oxygen Demand Biodegradable Dissolved Organic Carbon Bromide	SM5210B 405.1 Allgeier, 1996 EPA 300.0	mg/L mg/L	3 0.3 5	260 ND (<1.5) 88	ND ND (<0.6) 45	2.7 54	220 J 27 58	0.5 41	ND ND 31	ND ND 44
Chloride Fluoride	EPA 300.0 EPA 300.0 SM 4500F-C	ug/L mg/L mg/L	1 0.05	55 0.084	53 0.1	54 54 0.1	43 0.071	49 0.071	50 0.073	54 0.085
Sulfate SulfideTotal	EPA 300.0 SM4500SD/376.2	mg/L mg/L	0.5 0.05	25 0.12	28 ND	25 ND	23 0.23	28 ND	27 ND	28 ND
Sulfur Total ICAP Total Hardness as CaCO3 by ICP (calc)	EPA 200.7 SM 2340B	mg/L mg/L	0.1	23 120		**	130 120			
Total Chlorine Free Chlorine	SM 4500-CL G SM 4500CL-G/HACH	mg/L mg/L	0.1 0.1	ND ND	0.74 J- ND	ND ND	1.5 1.1	0.37 ND	0.4 ND	0.13 ND
Chloramines Anion Sum - Calculated	SM 4500CL-G/HACH SM 1030E	mg/L meq/L	0.1	ND UJ 8.7	0.68 J- 4.9	ND UJ 4.6	0.4 7	0.32 4.9	0.32 4.8	ND 5
Cation Sum - Calculated Cation Sum - Manual Calculation Cation (Anion Difference	SM 1030E SM 1030E	meq/L %	0.001	5.3				5.3	4.8 ND	5.1
Cation/Anion Difference Cation Balance with NH3 PATHOGENS	SM 1030E	% meq/L	0	4.3 9.5	==	-	7.4 8.2	==		
Total Coliform Fecal Coliform	SM 9222B SM 9222D	MPN/100 mL MPN/100 mL	1 1	>2419600	ND ND	41	>2419.6	3	ND	>2419.6
Fecal Coliform Cryptosporidium	SM 9222D EPA 1623	CFU/mL oocysts/L	1 NA	>2419600 J		41 J	>2000 ND	ND ND	ND ND	15 ND
Giardia Somatic coliphage titer	EPA 1623 FR59#28 1602	Organism/L P/100mL	NA 1	160000	<1	<1	1200000	 <1	<1	 140
Male-specific coliphage titer NUTRIENTS	FR59#28 1602	P/100mL	1	130000	<1	<1	110000	<1	<1	<1
Nitrate (as Nitrogen) Nitrite Nitrate+Nitrite	EPA 300.0 EPA 300.0 EPA 300.0	mg/L mg/L	0.1 0.05 0.1	ND (<0.2) ND (<0.1)	5.4 ND 5.4	1.2 ND 1.2	ND (<0.2) ND (<0.1)	7.5 ND 7.5	5.4 ND 5.4	3 ND (<0.1) 3
Nitrate+Nitrite Ammonia Nitrogen Kjeldahl Nitrogen	EPA 300.0 EPA 350.1 EPA 351.2	mg/L mg/L	0.1 0.05 0.2	ND (<0.2) 59 80	5.4 0.33 1.4	1.2 ND 0.86	ND (<0.2) 44 80	7.5 ND 1.1	ND	0.1 1
Kjeldahi Nitrogen Total Nitrogen Dissolved Orthophosphate (as P)	EPA 351.2 EPA 353-351 4500P-E/365.1	mg/L mg/L mg/L	0.2 0.2 0.01	80 80 5.2	1.4 6.8 3	0.86 2.1 3.6	80 80 4.3	1.1 8.6 3.5	0.97 J 6.4 3.1	1 4 3.8 J-
Dissolved Total Phosphorus Orthophosphate (as P)	SM4500-PE/EPA 365.1 4500P-E/365.1	mg/L mg/L	0.4	6 6.1	3.2 3	3.7 3.6	4.4 4.5	3.5 3.1	3.2 2.9	3.8 3.7 J-
Total Phosphorus METALS (DISSOLVED)	SM4500-PE/EPA 365.1	mg/L	0.02	9.9	3.2	3.8	9	3.8	3.1	3.8
Aluminum Antimony	EPA 200.8 EPA 200.8	ug/L ug/L	20 1	25 ND	ND ND	ND ND	ND (<100) ND (<5)	ND ND	ND ND	ND ND
Arsenic Barium	EPA 200.8 EPA 200.8	ug/L ug/L	1 2	ND 7	ND 7.4	ND 8.3	ND (<5) ND (<10)	ND 9.2	ND 7.5	ND 6.6
Beryllium Boron	EPA 200.8 EPA 200.7	ug/L mg/L	0.05	ND 0.15	ND 0.25	ND 0.22	ND (<5) 0.21	ND 0.23	ND 0.21	ND 0.22
Calcium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5	ND 27	ND 31	ND 26	ND (<2.5) 24	ND 34 ND	30 ND	ND 32
Chromium Copper Iron	EPA 200.8 EPA 200.8 EPA 200.7	ug/L ug/L	1 2 0.02	ND 19 0.048	6.2 ND	ND 2.2 0.028	ND (<5) ND (<10) 0.06	7.6 0.028	5.4 0.026	2.6 ND
Lead Magnesium	EPA 200.7 EPA 200.8 EPA 200.7	mg/L ug/L mg/L	0.02 0.5 0.1	ND 9,2	ND ND	ND 8.6	ND (<2.5) 8.7	0.028 ND 10	0.026 ND 9	ND 9.6
Manganese Mercury	EPA 200.8 EPA 245.1	ug/L ug/L	2	18 ND	13 ND	9 ND	16 ND	40 ND	9.2 ND	8 ND
Potassium Seleniun	EPA 200.7 EPA 200.8	mg/L ug/L	1 5	17 ND	15 ND	12 ND	15 ND (< 25)	17 ND	15 ND	16 ND
Silica Silicon	EPA 200.7 EPA 200.7	mg/L mg/L	0.5 0.2	39 18	43 20	25 12	40 19	45 21	42 20	39 18
Silver Sodium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5	ND 51	ND 57	ND 52	ND 46	ND 54	ND 51	ND 54
Thallium Zinc	EPA 200.8 EPA 200.8	ug/L ug/L	1 20	ND 37	ND 93	ND 58	ND (<5) ND (<100)	ND 73	ND 98	ND 59
METALS (TOTAL) Aluminum	EPA 200.8	ug/L	20	150		**	350			
Antimony Arsenic Barium	EPA 200.8 EPA 200.8 EPA 200.8	ug/L ug/L ug/L	1 1 2	ND 1.2 41		**	ND 1.1 22			
Beryllium Boron	EPA 200.8 EPA 200.7	ug/L mg/L	1 0.05	ND 0.16		**	ND 0.26			
Cadmium Calcium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5	ND 33			ND 30		-	
Chromium Copper	EPA 200.8 EPA 200.8	ug/L ug/L	1 2	ND 79			ND 73			==
Iron Lead	EPA 200.7 EPA 200.8	mg/L ug/L	0.02 0.5	0.32 0.96			0.49 1.5		-	
Magnesium Manganese	EPA 200.7 EPA 200.8	mg/L ug/L	0.1	10 26			10 62			
Mercury Nickel Potassium	EPA 245.1 EPA 200.8 EPA 200.7	ug/L ug/L	0.2 5 1	ND ND 18	**	**	ND ND 17		-	
Selenium Silica	EPA 200.8 EPA 200.7	mg/L ug/L mg/L	5	ND 41			ND 44			
Silver Sodium	EPA 200.8 EPA 200.7	ug/L mg/L	0.5	ND 54			ND 52			
Thallium Zinc	EPA 200.8 EPA 200.8	ug/L ug/L	1 20	ND 87	==		ND 150			==
RESIDUAL CHEMICALS N-Nitroso dimethylamine (NDMA)	EPA 521	ng/L	2	ND UJ	ND	ND	11		3	2.8
1,4-Dioxane 1,7-Dimethylxanthine	EPA 522 LC-MS-MS	ug/L ng/L	0.07 10	0.38 410	0.73 ND	0.6 ND	0.44 660	0.71 ND	0.78 ND	0.55 J+ ND
2,4-D (Method LC-MS-MS) 4-n-Octylphenol diethoxylate 4-n-Octylphenol monoethoxylate	LC-MS-MS LC-MS-MS-WW LC-MS-MS-WW	ng/L ng/L ng/L	5 100 100	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND UJ
4-nonylphenol - semi quantitative 4-para-Nonylphenol	LC-MS-MS LC-MS-MS-WW	ng/L ng/L	100	1200 J	670 J	ND UJ	ND UJ	110 J	180 J	ND UJ
4-tert-octylphenol Acesulfame-K	LC-MS-MS LC-MS-MS	ng/L ng/L	50 20	230 57000	ND 830	ND 410	ND 300000	73 180	130 190	55 J 260
Acetaminophen Albuterol	LC-MS-MS LC-MS-MS	ng/L ng/L	5	98000 ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Amoxicillin (semi-quantitative) Andorostenedione	LC-MS-MS LC-MS-MS	ng/L ng/L	20 5	6200 J 850	ND UJ ND	ND UJ ND	10000 J ND	ND UJ ND	ND UJ ND	ND UJ ND
Atenolol Atrazine (Method LC-MS-MS) Azithromycin	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5 5 20	3200 ND 210 J	75 ND ND UJ	18 ND ND UJ	ND J 440 J	62 J ND ND UJ	ND UJ	25 J ND ND UJ
Azitnromycin Bendroflumethiazide Bezafibrate	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND ND	ND UJ ND ND	ND UJ ND ND	ND ND	ND UJ ND ND	ND UJ ND	ND UJ ND ND
Bisphenol A BPA (Bisphenol A, low detection limit)	LC-MS-MS LC-MS-MS	ng/L ng/L	100 10	ND 140	ND ND	ND ND	160	ND	ND	ND
Bromacil (Method LC-MS-MS) Butalbital	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND 17	ND 9.8	ND 8.8	ND ND	ND 9.5	ND 8.1	ND 9.7
Butylparben Caffeine	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	23 50000	ND ND	ND ND	ND 75000	ND ND	ND ND	ND ND
Carbadox Carbamazepine	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 490	ND 240	ND 240	ND 230	ND 190	ND 210	ND 170
Carisoprodol Chloridazon Chloramphenicol	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5 5 10	ND ND ND	ND ND ND	17 ND ND	ND ND 440	ND ND ND	ND ND ND	ND ND UJ
Chlorotoluron Cimetidine	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L ng/L ng/L	5	ND ND 420 J	ND ND UJ	ND ND ND UJ	ND 120 J	ND ND ND UJ	ND ND UJ	ND UJ ND UJ
Clofibric Acid Cotinine	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND 5200	ND 54	ND ND 45	ND 1800	ND ND	ND ND	ND OJ ND
Cyanazine DACT	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
DEA DEET	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	ND 370	ND 41	ND 25	ND 390	ND ND	ND ND	ND 15
Dehydronifedipine DIA	LC-MS-MS LC-MS-MS	ng/L ng/L	5 5	ND ND	8.7 ND	ND ND	ND ND	ND ND	ND ND	ND ND
Diazepam Diclofenac	LC-MS-MS LC-MS-MS	ng/L ng/L	5	ND ND	ND 55	ND ND	ND 180	ND 9.6	ND ND	ND 16
Diuron Dilantin Dilatin	LC-MS-MS LC-MS-MS	ng/L ng/L	5 20	ND 690	ND 120	ND ND	ND ND	ND ND	ND ND	ND ND
Diltiazem Erythromycin Estradial - 17 heta	LC-MS-MS LC-MS-MS	ng/L ng/L	5 10	73 270	5.6 ND	ND ND	ND ND	ND ND	ND ND	ND ND
Estradiol - 17 beta Estradiol - 17 beta (low detection) Estrone	LC-MS-MS LC-MS-MS-WW LC-MS-MS	ng/L ng/L	0.5 0.5	ND ND 44	ND ND ND	ND ND ND	ND ND 32	ND ND ND	ND ND ND	ND ND ND
Estrone Estrone (low detection) Ethinyl Estradiol - 17 alpha	LC-MS-MS LC-MS-MS-WW LC-MS-MS	ng/L ng/L ng/L	0.5 0.5 5	1.1 19	ND ND ND	1.9 ND	32 20 ND	ND ND ND	ND ND ND	ND ND ND
Ethinyi Estradioi - 17 alpha Ethinyi Estradioi - 17 alpha (low detection) Ethylparaben	LC-MS-MS-WW LC-MS-MS	ng/L ng/L ng/L	0.5 20	ND 200	ND ND ND	ND ND ND	ND ND 160	ND ND ND	ND ND	ND ND ND
Flumeqine	LC-MS-MS	ng/L	10	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND

				ed Water Plant (MWRW	(P)	Compling Event 4 /10	(07/2015)		
			Sampling Event 3 (05		MWRWP-	Sampling Event 4 (10)		MWRWP-	MWRWP-
	I		MWRWP-WASTEWATER		POST-WETLANDS	MWRWP-WASTEWATER	MWRWP-RECLAIMED	PRE-WETLANDS	POST-WETLANDS
ANALYTE Fluoxetine Gemfibrozil	METHOD LC-MS-MS LC-MS-MS	UNIT MRI ng/L 10 ng/L 5	Result Qua 48 7100	26 130	Result Qual	Result Qual 85 14000	Result Qual 35 19	Result Qual 36 ND	Result Qual 15 12
Ibuprofen Iohexal	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 10 ng/L 10	ND 2600	ND 860	ND 420	2900 13000	25 270	20	27 130
lopromide Isobutylparaben	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	7.6 ND	23 ND	41 ND	12000 3500	510 ND	540 ND	170 ND
Isoproturon Ketoprofen	LC-MS-MS LC-MS-MS	ng/L 100 ng/L 5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ketorolac Lidocaine Lincomycin	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5 ng/L 10	ND 220 ND	73 ND	9.4 ND	ND 180 ND	ND 12 ND	ND ND ND	ND ND ND
Linuron	LC-MS-MS LC-MS-MS	ng/L 10 ng/L 5 ng/L 20	ND 1100	ND ND 190	ND ND 82	ND ND	ND 290	ND 310	ND ND 140
Meclofenamic Acid Meprobamate	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	ND ND	ND ND	ND ND	ND ND	ND 17	ND 9.5	ND 11
Metazachlor Metformin	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 10	ND R 220000	2600	ND R 830	ND R 180000	ND R 2200	ND R 1100	ND R 1500
Methylparaben Naproxen	LC-MS-MS LC-MS-MS	ng/L 20 ng/L 10	ND 460	ND 32	ND ND	74 69000	ND ND	21 ND	ND ND
Nifedipine Nonylphenol Diethoxylate Nonylphenol Monoethoxylate	LC-MS-MS LC-MS-MS-WW LC-MS-MS-WW	ng/L 20 ng/L 100 ng/L 100		ND UJ ND ND	ND UJ ND ND	ND UJ ND ND	ND UJ ND ND	ND UJ ND ND	ND UJ ND ND
Norethisterone Octylphenol	LC-MS-MS LC-MS-MS-WW	ng/L 5 ng/L 100	ND	ND ND	ND ND	ND 	ND ND	ND	ND ND
Oxolinic acid Pentoxifylline	LC-MS-MS LC-MS-MS	ng/L 10 ng/L 5	ND ND	ND ND	ND ND	ND 210	ND ND	ND ND	ND ND
Phenazone Primidone	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	ND 220	ND 130	ND 150	ND 170	ND 170	ND 170	ND 170
Progesterone Propazine	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5 ng/L 5	120 ND 880	ND ND ND	ND ND ND	ND ND 170	ND ND ND	ND ND ND	ND ND
Propylparaben Quinoline Simazine (Method LC-MS-MS)	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5 ng/L 5	140 ND	28 ND	24 ND	250 ND	ND ND	ND ND	ND ND
Sucralose Sulfachloropyridazine	LC-MS-MS LC-MS-MS	ng/L 100 ng/L 5		68000 ND	72000 ND	410000 ND	50000 ND	46000 ND	68000 J-
Sulfadiazine Sulfadimethoxine	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Sulfamerazine Sulfamethazine	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Sulfamethizole Sulfamethoxazole	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	ND 1600	ND ND	ND ND	ND 1800	ND 87	ND 22	ND 42
Sulfathiazole TCEP	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 10	ND ND	ND 130	ND 240	ND ND	ND 120	ND 150	ND 160
TCPP TDCPP Theobromine	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L 100 ng/L 100 ng/L 10		ND ND	260 ND ND	1100 510 J 710	270 130 ND	350 130 ND	300 170 J ND
Theobromine Thiabendazole Testosterone	LC-MS-MS LC-MS-MS LC-MS-MS	ng/L 10 ng/L 5 ng/L 5	ND ND	ND ND ND	ND ND ND	710 ND ND	ND ND ND	ND ND ND	ND ND ND
Triclocarban Triclosan	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	ND ND 480	ND ND	ND ND ND	110 1500	ND ND	ND ND	ND ND ND
Trimethoprim Warfarin	LC-MS-MS LC-MS-MS	ng/L 5 ng/L 5	720 ND	13 ND	ND ND	390 18	ND ND	ND ND	ND ND
PFCs Perfluoro butanoic acid- PFBA	MWH PFC	ng/L 10	ND	ND	ND	ND	ND	ND	ND UJ
Perfluoro octanesulfonate-PFOS Perfluoro octanesulfonic acid - PFOS	MWH PFC MWH PFC	ng/L 5 ng/L 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND UJ
Perfluoro octanoic acid - PFOA Perfluoro-1-butanesulfonate Perfluoro-1-butanesulfonic acid	MWH PFC MWH PFC MWH PFC	ng/L 5 ng/L 5 ng/L 5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	16 7.3 9.6	18 7.9 8.6	22 J- 12 J- 12 J-
Perfluoro-1-butanesulfonic acid Perfluoro-1-hexanesulfonate Perfluoro-1-hexanesulfonic acid	MWH PFC MWH PFC MWH PFC	ng/L 5 ng/L 5 ng/L 5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	9.6 ND ND	ND ND	ND UJ ND UJ
Perfluoro-n-decanoic acid Perfluoro-n-heptanoic acid	MWH PFC MWH PFC	ng/L 5 ng/L 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND UJ
Perfluoro-n-hexanoic acid Perfluoro-n-nonanoic acid	MWH PFC MWH PFC	ng/L 5 ng/L 5	ND ND	18 ND	11 ND	12 ND	46 ND	53 ND	68 J- ND UJ
Perfluoropentanoic acid PBDEs/EDB/DBCP	MWH PFC	ng/L 5	7.1	31	17		79	79	93 J-
BDE-100 BDE-153	GC-QQQ PBDE GC-QQQ PBDE	ng/L 5 ng/L 5	ND UJ	ND	ND ND	ND ND	ND ND	ND ND	ND ND
BDE-154 BDE-183	GC-QQQ PBDE GC-QQQ PBDE	ng/L 5 ng/L 5	ND UJ	ND	ND ND	ND ND	ND ND	ND ND	ND ND
BDE-209 BDE-28	GC-QQQ PBDE GC-QQQ PBDE	ng/L 100 ng/L 5	ND UJ	ND	ND UJ ND	ND ND	ND ND	ND ND	ND ND
BDE-47 BDE-99 Bifenthrin	GC-QQQ PBDE GC-QQQ PBDE GC-QQQ PBDE	ng/L 5 ng/L 5 ng/L 5	5.3 J- 5.5 J-	ND ND ND	ND ND ND	5.8 J- ND ND	ND ND ND	ND ND ND	ND ND ND
cis-Permethrin Fipronil	GC-QQQ PBDE GC-QQQ PBDE	ng/L 5 ng/L 2	28 J- 2.9 J-		ND 2.5	ND ND	ND ND	ND ND	ND ND
Total Permethrin trans-Permethrin	GC-QQQ PBDE GC-QQQ PBDE	ng/L 10 ng/L 5	65 J- 37 J-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloropropane (DBCP) Ethylene Dibromide (EDB)	EPA 551.1 EPA 551.1	ug/L 0.01 ug/L 0.01		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
DBPs Chloroform (Trichloromethane)	EPA 524.2	ug/L 0.5		12 J+	5.7 J+	2.2	16	35	22
Bromodichloromethane	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5	ND ND	ND 2.7	ND 0.82	ND 0.68	ND 4.6	ND 9.8	ND 3.4
Chlorodibromomethane Total Trihalomethanes (TTHM) Bromochloroacetic acid	EPA 524.2 EPA 524.2 SM 6251B	ug/L 0.5 ug/L 0.5 ug/L 1	1.1 ND	ND 15 2.4	ND 6.5 ND	ND 2.9 ND	0.58 21 2.5	1 46 3	ND 25 ND
Dibromoacetic acid Dichloroacetic acid	SM 6251B SM 6251B	ug/L 1 ug/L 1	ND 3	ND 15	ND ND	ND 2.4	ND 16	ND 19	ND ND
Monobromoacetic acid Monochloroacetic acid	SM 6251B SM 6251B	ug/L 1 ug/L 2	ND ND	ND ND	ND ND	ND ND	ND ND	ND 2.5	ND ND
Total Haloacetic Acids (HAA5) Trichloroacetic acid	SM 6251B SM 6251B	ug/L 2 ug/L 1	7.9 4.9	32 17	ND ND	7 4.6	38 22	52 30	ND ND
PCBs PCB 1016 Aroclor	EPA 505	ug/L 0.08	-		-	ND UJ	ND	ND	ND
PCB 1221 Aroclor PCB 1232 Aroclor	EPA 505 EPA 505	ug/L 0.1 ug/L 0.1				ND UJ	ND ND	ND ND	ND ND
PCB 1242 Aroclor PCB 1248 Aroclor PCB 1254 Aroclor	EPA 505 EPA 505 EPA 505	ug/L 0.1 ug/L 0.1 ug/L 0.1				ND UJ ND UJ ND UJ	ND ND ND	ND ND ND	ND ND ND
PCB 1260 Aroclor Total PCBs	EPA 505 EPA 505	ug/L 0.1 ug/L 0.1				ND UJ ND UJ	ND ND	ND ND	ND ND
PESTICIDES AND HERBICIDES Alachlor (Alanex)	EPA 505	ug/L 0.1		-		ND UJ	ND	ND	ND
Aldrin (EPA Method 505) Chlordane	EPA 505 EPA 505	ug/L 0.01 ug/L 0.1		-		ND UJ ND UJ	ND ND	ND ND	ND ND
Dieldrin (EPA Method 505) Endrin (EPA Method 505)	EPA 505 EPA 505	ug/L 0.01 ug/L 0.01		-		ND UJ	ND ND	ND ND	ND ND
Heptachlor (EPA Method 505) Heptachlor Epoxide Lindane (gamma-BHC)	EPA 505 EPA 505 EPA 505	ug/L 0.01 ug/L 0.01 ug/L 0.01				ND UJ ND UJ ND UJ	ND ND ND	ND ND ND	ND ND
Methoxychlor (EPA Method 505) Toxaphene	EPA 505 EPA 505	ug/L 0.05 ug/L 0.5		-		ND UJ ND UJ	ND ND	ND ND	ND ND ND
2,4,5-T 2,4,5-TP (Silvex)	EPA 515.4 EPA 515.4	ug/L 0.2 ug/L 0.2				ND ND	ND ND	ND ND	ND ND
2,4-D (EPA Method 515.4) 2,4-DB	EPA 515.4 EPA 515.4	ug/L 5 ug/L 2				ND ND	ND ND	ND ND	ND ND
3,5-Dichlorobenzoic acid Acifluorfen	EPA 515.4 EPA 515.4	ug/L 0.5 ug/L 0.2	-	-		ND ND	ND ND	ND ND	ND ND
Bentazon Dicamba Dalapon	EPA 515.4 EPA 515.4 EPA 515.4	ug/L 0.5 ug/L 0.1 ug/L 1		-		ND ND ND	ND ND 1.8	ND ND ND	ND ND ND
Dalapon Dichlorprop Dinoseb	EPA 515.4 EPA 515.4 EPA 515.4	ug/L 1 ug/L 0.5 ug/L 0.2				ND ND ND	ND ND	ND ND ND	ND ND ND
Pentachlorophenol (EPA Method 515.4) Picloram	EPA 515.4 EPA 515.4	ug/L 0.2 ug/L 0.04 ug/L 0.1		-		ND ND	ND ND ND	ND ND ND	ND ND ND
Tot DCPA Mono&Diacid Degradate VOCs	EPA 515.4	ug/L 0.1	••		==	ND ND	ND ND	ND ND	ND
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane 1,1-Dichloroethylene	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	EPA 524.2 EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5 ug/L 0.5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
1,2,4-Trichloropenzene 1,2,4-Trimethylbenzene	EPA 524.2 EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5 ug/L 0.5	ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND
1,2-Dichloroethane 1,2-Dichloropropane	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene 1,3-Dichloropropane	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,2-Dichloropropane 2-Butanone (MEK)	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Hexanone 4-Methyl-2-Pentanone (MIBK)	EPA 524.2 EPA 524.2	ug/L 10 ug/L 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene Bromobenzene Bromochloromethane	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromochloromethane Bromoethane Bromomethane (Methyl Bromide)	EPA 524.2 EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5 ug/L 0.5	ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Bromomethane (Methyl Bromide) Chlorobenzene Chloroethane	EPA 524.2 EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5 ug/L 0.5	ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Chloroethane Chloromethane(Methyl Chloride) Dibromomethane	EPA 524.2 EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5 ug/L 0.5	ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND
Carbon disulfide Carbon Tetrachloride	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	EPA 524.2	ug/L 0.5	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	EPA 524.2 EPA 524.2	ug/L 0.5 ug/L 0.5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

				Sampling Event 3 (05/	20/2015)		Sampling Event 4 (10/	07/2015)	l.	
				Sumpling Event 5 (65)	10, 2013)	MANA/DNA/D	ouniphing Event 4 (20)	.,, 2013,	MANA/DNA/D	MANDAND
				MWRWP-WASTEWATER	MWRWP-RECLAIMED	MWRWP- POST-WETLANDS	MWRWP-WASTEWATER	MWRWP-RECLAIMED	MWRWP- PRE-WETLANDS	MWRWP- POST-WETLANDS
NALYTE Dichloromethane	METHOD EPA 524.2	UNIT ug/L	MRL 0.5	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qu
Di-isopropyl ether Ethyl benzene	EPA 524.2 EPA 524.2	ug/L ug/L	3 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachlorobutadiene	EPA 524.2	ug/L	0.5	ND	ND	ND	ND	ND	ND	ND
sopropylbenzene n,p-Xylenes	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
m-Dichlorobenzene (1,3-DCB) Methyl Tert-butyl ether (MTBE)	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Naphthalene (EPA Method 524.2) n-Butylbenzene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Propylbenzene	EPA 524.2	ug/L	0.5	ND	ND	ND	ND	ND	ND	ND
o-Chlorotoluene o-Dichlorobenzene (1,2-DCB)	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-Xylene o-Chlorotoluene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-Dichlorobenzene (1,4-DCB) o-Isopropyltoluene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	0.52 1.7	ND ND	ND ND	ND 1.6	ND ND	ND ND	ND ND
sec-Butylbenzene Styrene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
ert-amyl Methyl Ether	EPA 524.2	ug/L	3	ND	ND	ND	ND	ND	ND	ND
ert-Butyl Ethyl Ether ert-Butylbenzene	EPA 524.2 EPA 524.2	ug/L ug/L	3 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Fetrachloroethylene (PCE) Foluene	EPA 524.2 EPA 524.2	ug/L ug/L	0.5	ND 16	ND ND	ND ND	ND 5.8	ND ND	ND ND	ND ND
Fotal 1,3-Dichloropropene Fotal xylenes	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
rans-1,2-Dichloroethylene	EPA 524.2	ug/L	0.5	ND	ND	ND	ND	ND	ND	ND
rans-1,3-Dichloropropene Frichloroethylene (TCE)	EPA 524.2 EPA 524.2	ug/L ug/L	0.5 0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Frichlorofluoromethane Frichlorotrifluoroethane (Freon 113)	EPA 524.2 EPA 524.2	ug/L ug/L	0.5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride (VC)	EPA 524.2	ug/L	0.3	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	EPA 525.2	ug/L	0.1			-	ND ND	ND ND	ND ND	ND ND
2,6-Dinitrotoluene 1,4-DDD	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1			-	ND ND	ND ND	ND ND	ND ND
1,4-DDE 1,4-DDT	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1			-	ND ND	ND ND	ND ND	ND ND
Acenaphthene Acenaphthylene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1		==	-	ND ND	ND ND	ND ND	ND ND
Acetochlor Alachlor	EPA 525.2 EPA 525.2	ug/L	0.1				ND ND	ND ND	ND ND	ND ND
Aldrin (EPA Method 525.2)	EPA 525.2	ug/L ug/L	0.05	==			ND	ND	ND	ND
Alpha-BHC alpha-Chlordane	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.05			-	ND ND	ND ND	ND ND	ND ND
Anthracene Atrazine (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.02 0.05				ND ND	ND ND	ND ND	ND ND
Benz(a)Anthracene	EPA 525.2 EPA 525.2	ug/L ug/L	0.05			-	ND ND	ND ND	ND ND	ND ND
Benzo(a)pyrene Benzo(b)Fluoranthene	EPA 525.2	ug/L	0.02			-	ND	ND	ND	ND
Benzo(g,h,i)Perylene Benzo(k)Fluoranthene	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.02			-	ND ND	ND ND	ND ND	ND ND
Beta-BHC Bromacil(EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1			-	ND ND	ND ND	ND ND	ND ND
Butachlor Butylbenzylphthalate	EPA 525.2 EPA 525.2	ug/L ug/L	0.05				ND 1.4	ND ND	ND ND	ND ND
Chlorobenzilate	EPA 525.2	ug/L	0.1			**	ND	ND	ND	ND
Chloroneb Chlorothalonil(Draconil,Bravo)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1				ND ND	ND ND	ND ND	ND ND
Chlorpyrifos (Dursban) Chrysene	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.02				ND ND	ND ND	ND ND	ND ND
Delta-BHC Di-(2-Ethylhexyl)adipate	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.6				ND ND	ND ND	ND ND	ND ND
Di(2-Ethylhexyl)phthalate	EPA 525.2	ug/L	0.6			**	1.3	ND	ND	ND
Diazinon (Qualitative) Dibenz(a,h)Anthracene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.05				ND ND	ND ND	ND ND	ND ND
Dichlorvos (DDVP) Dieldrin (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.01				ND ND	ND ND	ND ND	ND ND
Diethylphthalate Dimethoate	EPA 525.2 EPA 525.2	ug/L ug/L	0.5 0.1				5.6 ND	ND ND	ND ND	ND ND
Dimethylphthalate	EPA 525.2	ug/L	0.5	==			ND	ND	ND	ND
Di-n-Butylphthalate Di-N-octylphthalate	EPA 525.2 EPA 525.2	ug/L ug/L	0.1				3.3 ND	ND ND	ND ND	ND ND
Endosulfan I (Alpha) Endosulfan II (Beta)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1				ND ND	ND ND	ND ND	ND ND
Endosulfan Sulfate Endrin (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.01				ND ND	ND ND	ND ND	ND ND
Endrin Aldehyde	EPA 525.2	ug/L	0.1				ND	ND	ND	ND
EPTC Fluoranthene	EPA 525.2 EPA 525.2	ug/L ug/L	0.1		-		ND ND	ND ND	ND ND	ND ND
Fluorene gamma-Chlordane	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.05				ND ND	ND ND	ND ND	ND ND
Heptachlor (EPA Method 525.2) Heptachlor Epoxide (isomer B)	EPA 525.2 EPA 525.2	ug/L ug/L	0.01 0.05		-		ND ND	ND ND	ND ND	ND ND
Hexachlorobenzene	EPA 525.2	ug/L	0.05				ND	ND	ND	ND
Hexachlorocyclopentadiene ndeno(1,2,3,c,d)Pyrene	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.05		-		ND ND	0.052 ND	0.078 ND	ND ND
sophorone .indane	EPA 525.2 EPA 525.2	ug/L ug/L	0.5 0.04				ND ND	ND ND	ND ND	ND ND
Malathion Methoxychlor (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.05		-		ND ND	ND ND	ND ND	ND ND
Metolachlor Metribuzin	EPA 525.2	ug/L	0.05		-		ND ND	ND ND	ND ND	ND ND
Molinate	EPA 525.2 EPA 525.2	ug/L ug/L	0.1			**	ND	ND	ND	ND
Naphthalene (EPA Method 525.2) Parathion	EPA 525.2 EPA 525.2	ug/L ug/L	0.5 0.1				ND ND	ND ND	ND ND	ND ND
Pendimethalin Pentachlorophenol (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.1				ND ND	ND ND	ND ND	ND ND
Permethrin (mixed isomers) Phenanthrene	EPA 525.2 EPA 525.2	ug/L	0.1		-	**	ND ND	ND ND	ND ND	ND ND
Propachlor	EPA 525.2	ug/L ug/L	0.05				ND	ND	ND	ND
Pyrene Simazine (EPA Method 525.2)	EPA 525.2 EPA 525.2	ug/L ug/L	0.05 0.05				ND ND	ND ND	ND ND	ND ND
Ferbacil Ferbuthylazine	EPA 525.2 EPA 525.2	ug/L ug/L	0.1 0.1				ND ND	ND ND	ND ND	ND ND
Thiobencarb Total PAH	EPA 525.2 EPA 525.2	ug/L	0.2		-	**	ND ND	ND ND	ND ND	ND ND
rans-Nonachlor Frifluralin	EPA 525.2 EPA 525.2 EPA 525.2	ug/L ug/L ug/L	0.02		-		ND ND	ND ND	ND ND	ND ND ND
				ND (-#) = Not Detected an mg/L = milligrams per liter µS/cm = microsiemens per MPN/100ml = Most Probal PFC = Perfluorinated Comp DBP = Disinfection Byprodu VOC = Volatile Organic Cor Notes: J Some analytes are listed 2) Data qualifiers: J = Value is detected J- = Value is detected	d MRL is higher than the met (ppm); μg/L = micrograms centimeter; mV = millivolts	hod MRL due to dilutions per liter (ppb); ng/l= nano units) per 100 ml; PFU/10 tied Diphenyl Ether liphenyl ee Organic Compound d via multiple methods.	lyzed; Qual = Data Qualifier grams per liter (ppt) Oml = Plaque Forming Units			

Appendix C Data Validation Report

February 7, 2017

This page intentionally left blank.

DATA VALIDATION REPORT

LOTT Wastewater and Reclaimed Water Water Quality Characterization Sampling Events

Laboratory: Eurofins Eaton Analytical (EEA)

Laboratory Report Numbers: 507838, 507852, 507854, 507862, 507866, 517350, 517353, 517355, 517384, 517386, 517388, 518510, 518512, 518516, 518517, 521053, 521367, 535546, 535637, 549205, 549211, 556901, and 556958

Dates of Sampling: 11/12/2014, 11/13/2014, 2/17/2015, 2/18/2015, 5/20/2015, 8/19/2015, and 10/7/2015

The following table summarizes for which sampling dates and locations each laboratory report relates:

Table 1. Quarterly sample dates and locations of LOTT wastewater and reclaimed water

Laboratory Report Number	Dates of Sampling	Location(s) Sampled
507838	11/12/2014 (Event 1)	MWRWP-Pre-Wetlands
		MWRWP-Post-Wetlands
507852	11/12/2014 (Event 1)	MWRWP-Post-Wetlands (Dup)
507854	11/12/2014 (Event 1)	MWRWP-Wastewater
	11/13/2014 (Event 1)	BIRWP-Wastewater
507862	11/12/2014 (Event 1)	MWRWP-Reclaimed
	11/13/2014 (Event 1)	BIRWP-Reclaimed
507866	11/13/2014 (Event 1)	BIRWP-Secondary
517350	2/17/2015 (Event 2)	MWRWP-Wastewater
517353	2/17/2015 (Event 2)	MWRWP-Post-Wetlands
517355	2/17/2015 (Event 2)	MWRWP-Reclaimed
517384	5/20/2015 (Event 3)	BIRWP-Wastewater
517386	5/20/2015 (Event 3)	MWRWP-Reclaimed
517388	5/20/2015 (Event 3)	MWRWP-Post-Wetlands
518510	8/19/2015 (Event 4)	BIRWP-Wastewater
518512	8/19/2015 (Event 4)	BIRWP-Reclaimed
518516	10/7/2015 (Event 4)	MWRWP-Pre-Wetlands
518517	8/19/2015 (Event 4)	BIRWP-Secondary
521053	2/18/2015 (Event 2)	BIRWP-Reclaimed
521367	2/18/2015 (Event 2)	BIRWP-Wastewater
535546	5/20/2015 (Event 3)	MWRWP-Wastewater
535637	5/20/2015 (Event 3)	BIRWP-Reclaimed
549205	10/7/2015 (Event 4)	MWRWP-Reclaimed
549211	10/7/2015 (Event 4)	MWRWP-Wastewater
556901	10/7/2015 (Event 4)	MWRWP-Wastewater
		MWRWP-Reclaimed
		MWRWP-Pre-Wetlands

		MWRWP-Post-Wetlands
556958	10/7/2015 (Event 4)	MWRWP-Post-Wetlands

INTRODUCTION

This report presents data validation for the wastewater and reclaimed water quality characterization sampling events collected quarterly from the Martin Way Reclaimed Water Plant (MWRWP), Budd Inlet Treatment Plant (BITP), and Budd Inlet Reclaimed Water Plant (BIRWP) facilities for LOTT Clean Water Alliance (LOTT). These samples were collected in accordance with the procedures and protocols specified in the *Task 1.3 Wastewater and Reclaimed Water Quality Characterization Work Plan*. The laboratory data report and Quality Assurance and Quality Control (QA/QC) data are included in this data validation report.

Verification and validation steps addressed in this report are:

- Sampling Procedures and Chain of Custody
- Holding Times
- Detection Limit
- Minimum Reporting Level (MRL) Check
- Surrogate Spike Recoveries
- Laboratory Matrix Spike/Matrix Spike Duplicates (MS/MSD) Recoveries and Relative Percent Differences (RPD)
- Laboratory Control Sample (LCS) Recoveries
- Laboratory Method Blank
- Duplicate Field Sample

Data that do not satisfy some verification and validation steps are qualified. Qualifier definitions are as follows, unless otherwise noted in subsequent sections:

- J = Analyte is detected and the result is an estimate
- J- = Analyte is detected and the result is an estimate, biased low
- J+= Analyte is detected and the result is an estimate, biased high
- UJ = Analyte is not detected and the result is an estimate
- R = Result is rejected

SAMPLING PROCEDURES and CHAIN OF CUSTODY

Grab samples for MWRWP were collected from the following locations: raw influent at the Martin Way Pump Station; reclaimed water produced at the MWRWP treatment plant; reclaimed water at the inflow point to the wetlands at LOTT's Hawks Prairie site; and reclaimed water that had been conveyed through the wetlands, sampled at the inflow point to the infiltration basins at LOTT's Hawks Prairie site. Grab samples for BITP/BIRWP were collected from the raw wastewater entering the BITP, the treated secondary effluent discharged to Budd Inlet, and Class A reclaimed water produced at the BIRWP, prior to entering the downtown Olympia reclaimed water distribution system.

Samples were collected at dedicated taps or outflows where water samples were placed directly into new laboratory bottles. Field filtering was accomplished on the samples that require filtering using new QED high-flow 0.45 micron disposable filters and a portable peristaltic pump with new tubing for each sample. Samples were labeled, sealed, placed in a cooler, and delivered to Eurofins Eaton Analytical in Monrovia, California.

Table 2. Quarterly water quality monitoring analytical parameters for characterization of LOTT wastewater and reclaimed water

Parameter	Method	Hold Time	QC Conducted by Laboratory
Residual Chemicals	PPCP LC/MS/MS Method	28 days	LCS, Method Blank, MRL Check, MS/MSD
Trihalomethanes	524.2	14 days	LCS, Method Blank, MRL Check, MS/MSD
HAA5	SM6251B	21 days	LCS, Method Blank, MRL Check, MS/MSD
Cryptosporidium	EPA 1623	7 days	None
svoc	EPA 525.2	30 days	LCS, Method Blank, MRL Check, MS/MSD
VOC	EPA 524.2	14 days	LCS, Method Blank, MRL Check, MS/MSD
PFOS/PFOA+ other PFCs	MWH PFC	28 days	LCS, Method Blank, MRL Check, MS/MSD
PBDEs plus permethrins	GC-QQQ	28 days	LCS, Method Blank, MRL Check, MS/MSD
EDB/DBCP	EPA 551.1	14 days	LCS, Method Blank, MRL Check, MS/MSD
Pesticides	EPA 505	14 days	LCS, Method Blank, MRL Check,

Parameter	Method	Hold Time	QC Conducted by Laboratory
			MS/MSD
Herbicides	EPA 515.4	21 days	LCS, Method Blank, MRL Check, MS/MSD
Low Detection Limit Hormones	EPA 539 Modified	28 days	LCS, Method Blank, MRL Check, MS/MSD
NDMA	EPA 521	14 days	LCS, Method Blank, MRL Check, MS/MSD
1,4-Dioxane	EPA 522	28 days	LCS, Method Blank, MRL Check, MS/MSD
Nitrate, nitrite	EPA 300. 351.1, 351.2	28 days	LCS, Method Blank, MRL Check, MS/MSD
Ammonia, TKN	EPA 350.1, 351.2	28 days	LCS, Method Blank, MRL Check, MS/MSD
Dissolved total phosphorus, Dissolved orthophosphate	EPA 365.1/SM4500-P-E	28 days	LCS, Method Blank, MRL Check, MS/MSD
Total phosphorous, orthophosphate	EPA 365.1&365.2, SM4500P-E	28 days	LCS, Method Blank, MRL Check, MS/MSD
Total organic carbon	SM 5310C	28 days	LCS, Method Blank, MRL Check, MS/MSD
Biodegradable organic carbon	Allgeier 1996	28 days	LCS, Method Blank, MRL Check, MS/MSD
Total coliform	SM 9223	30 hours	None
Fecal coliform	SM 9223	8 hours	None
Coliphage	Adams, 1959	2 days	LCS, Method Blank, MRL Check, MS/MSD
Chemical oxygen demand	EPA 410.4	28 days	LCS, Method Blank, MRL Check, MS/MSD
Biochemical oxygen demand	SM 5210B	2 days	LCS, Method Blank, MRL Check, MS/MSD
Metals (Ag, Al, As, B, Be, Ca, Cd, Cr, Cu, Fe, Hg, Pb, Mg, Mn, Na, Pb, Ni, Se, Sb, Si, Tl, Zn) ⁴	EPA 200 series	180 days (28 days for Hg)	LCS, Method Blank, MRL Check, MS/MSD
Total Sulfide	SM4500SD/376.2	7 days	LCS, Method Blank,

Parameter	Method	Hold Time	QC Conducted by Laboratory
			MRL Check, MS/MSD
Chloride, Sulfate, Bromide	EPA 300.0	28 days	LCS, Method Blank, MRL Check, MS/MSD
Chloramines	SM 4500CL-G	6 hours	LCS, Method Blank, MRL Check, MS/MSD
Fluoride	SM 4500F-C	28 days	LCS, Method Blank, MRL Check, MS/MSD
Free and total chlorine	SM 4500CL-G	6 hours	LCS, Method Blank, MRL Check, MS/MSD
Total dissolved solids	SM 2540C	7 days	LCS, Method Blank, MRL Check, MS/MSD

A copy of the completed chain-of-custody (COC) forms is included in the data packages for all batches analyzed for the sampling event. The forms were properly filled out and include relinquished and received signatures. Shipments were received by the laboratory on the day following sampling. The cooler temperatures ranged from 1.1 °C to 5.3°C, and frozen wet ice was present in each cooler.

HOLDING TIMES

The maximum holding times for the various analyses are included in Table 2. Samples were extracted and analyzed within the holding times with the following exceptions:

- Samples analyzed for bromide for EPA Method 300 exceeded hold times for lab report 507838. The samples were qualified as J-.
- Samples analyzed for 1,4-Dioxane for EPA Method 522 exceeded hold times for lab report 507854. The samples were qualified as J-.
- Samples analyzed for SM 5210B exceeded hold times for lab reports 507838, 507852, 507854, 507862, and 549211. Samples were qualified as J.
- Samples analyzed for SM 4500-CL G exceeded hold times for lab reports 507838, 507852, 507854, 507862, 507866, 517350, 517353, 517355, 517384, 517386, 517388, 521053, 521367, 535546, and 535637. Detections were qualified as J- and non-detects were qualified as UJ.
- Samples analyzed for SM 9222 exceeded hold times in lab reports 507838, 507852, 507854, 507862, 507866, 517350, 517353, 517355, 517384, 517386, 517388, 521053, 521367, 535546, and 535637. Detections were qualified as J and non-detects were qualified as UJ.

• Upon initial review, the residual chemical parameters were determined to have exceeded hold times for lab reports 517384, 517386, 517388, 518510, 518512, 518516, 535546, 535637, 549205, 549211, 556958. Similarly, several analytes for method MWH PFC also exceeded hold times for lab reports 507854, 517384, 517386, 517388, 518516, 535546, 535637, 549205, 549211, 556958. A hold time study was conducted in 2016 to determine the effects of long hold times on the pharmaceuticals and personal care products (PPCPs) and perflourinated compounds (PFCs). A brief summary of that hold time study and its results is provided below.

Method LC-MS-MS Hold Time Study

The laboratory hold times for samples run for PPCPs and PFCs in wastewater and reclaimed water ranged from 28 to 70 days. Although EEA's laboratory method has no formalized hold times for these compounds, these hold times are longer than the 28 day analytical schedule EEA customarily utilizes for processing such samples.

To evaluate the effects of these extended hold times, EEA conducted a study to evaluate the effects of extending the hold times to 84 days for PPCPs. EEA also prepared information documenting that PFCs are very stable. The methods and the detailed results of that study are presented in a summary memorandum by HDR dated November 9, 2016 and in EEA's report, "Holding Time Study Results for PPCPs and Metformin, LOTT Clean Water Alliance Project" dated November 4, 2016. Both documents are included as Attachment A to this data validation report.

The results of the hold time study indicate that 90 of the 98 compounds evaluated appear to remain stable throughout the 84 day period. Eight compounds appear to show evidence of degradation or analytical variability, as follows:

- Two compounds (metazachlor and metolachlor) began to degrade after approximately two weeks. Because all metazachlor and metolachlor samples were analyzed past a two week hold time, all of the results for these two parameters are assigned an "R" data quality flag, indicating the data are rejected. Note this impacts only the metazachlor data, as metolachlor was not analyzed for during the sampling efforts included in this data validation report (this compound was added to the laboratory's standard analytical list after the start of this effort).
- Four compounds (amoxicillin, azithromycin, cimetidine, and nonyl-phenol) show analytical variability on individual days and between days. Therefore, the results for these compounds should be considered semi quantitative (i.e., concentration results are estimates). "J" data quality flags are assigned for all of the results for these compounds (non-detects are assigned a "UJ" flag).
- Two compounds (nifedipine and theophyline) show concentrations consistently under or over the laboratory control sample (LCS) limits, but no evidence of inconsistent variability or degradation. This appears to be the result of a sample matrix effect or calibration artifact for this sample. "J" data quality flags are assigned for all of the results for these compounds (non-detects are assigned a "UJ" flag). Note Theophyline was not analyzed for in samples included in this data validation report (this compound was added to the laboratory's standard analytical list after the start of this effort).

DETECTION LIMIT

Detection limits are specified by the analytical methods. For samples that were diluted by the laboratory, the MRL was raised by the factor of the dilution (i.e., for an MRL of 0.1 mg/L and dilution factor of 2, the diluted MRL is calculated to be 0.2 mg/L). No qualifications were made to the data due to dilutions. Analytes with results below the MRL are defined as "ND" (Not Detected). Analytes with results below a diluted MRL are defined as "ND (<#)", where "#" represented the calculated diluted MRL.

MINIMUM REPORTING LEVEL (MRL) CHECK

A reporting level standard is included with every batch/analytical run to confirm the instrument response with the given batch. The following qualifications were made for data exceeding MRL recoveries QC limits:

- The MRL recovery for Butachlor by EPA Method 525.2 was 166% versus a limit of 50-150% for sample MWRWP-RAW in lab report 507854. The sample was qualified UJ.
- The MRL recovery for Dimethoate by EPA Method 525.2 was 103% versus a limit of 35-100% for sample MWRWP-RAW in lab report 507854. The sample was qualified UJ.
- The MRL recovery for Zinc Total by EPA Method 200.8 was 168% versus a limit of 50-150% for sample MWRWP-RAW and BITP-RAW in lab report 507854. The samples were qualified as J+.
- The MRL recovery for Dissolved Total Phosphorus as P was 163% versus a limit of 50-150% for samples MWRWP-RAW dissolved, MWRWP-Basin dissolved, MWRWP-Reclaimed dissolved, and BITP-RAW dissolved in lab reports 517350, 517353, 517355, and 521367, respectively. The samples were qualified as J+.

SURROGATE SPIKE RECOVERIES

Surrogates are organic compounds that are similar in chemical composition, extraction, and chromatography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analysis. Surrogate spikes were added to each sample associated with EPA 515.4 - Chlorophenoxy Herbicides, EPA 505 - Organochlorine Pesticides/PCBs, EPA 525.2 - Semivolatiles by GCMS, and EPA 524.2 - Volatile Organics by GCMS. Recoveries were reviewed and evaluated for adherence to the control limits specified for the various analytical methods:

Table 3. Surrogate Control Limits

Surrogate Parameter	Control Limits (% recovery)					
EPA 515.4 - Chlorophenoxy Herbicides						
2,4-Dichlorophenyl acetic acid	70-130					
EPA 505 - Organochlorine	1					
Tetrachlorometaxylene	70-130					
EPA 522 – 1,4-Di	oxane					
Dioxane-d8	70-130					
EPA 525.2 - Semivolati	les by GCMS					
1,3-Dimethyl-2-nitrobenzene	70-130					
Perylene-d12	70-130					
Triphenylphosphate	70-130					
EPA 524.2 - Volatile Orga	nics by GCMS					
1,2-Dichloroethane-d4	70-130					
4-Bromofluorobenzene	70-130					
Toluene-d8	70-130					
EPA 551.1 - EDB/DI	•					
1,2-Dibromopropane	80-120					
Haloacetic Acids by						
2,3-Dibromopropionic acid	70-130					
Nitrosamines by GCMS by EPA 521						
NDMA-D6	70-130					
GC-QQQ PBDE - @PBD						
BHT-d21	40-150					
perylene-d12	40-150					

Surrogate recoveries were low for the following samples. Results were qualified as estimates.

Table 4. Surrogate Recovery Control Limits Exceeding QC Limits

Lab Report	Sample ID	Analyte	Sample Result	Analytical Method	Qual
507854	BITP-RAW	Alachlor (Alanex)	ND	EPA 505	UJ
507854	BITP-RAW	Aldrin	ND	EPA 505	UJ
507854	BITP-RAW	Chlordane	ND	EPA 505	UJ
507854	BITP-RAW	Dieldrin	ND	EPA 505	UJ
507854	BITP-RAW	Endrin	ND	EPA 505	UJ
507854	BITP-RAW	Heptachlor	0.01 ug/L	EPA 505	J-
507854	BITP-RAW	Heptachlor Epoxide	ND	EPA 505	UJ
507854	BITP-RAW	Lindane (gamma-BHC)	ND	EPA 505	UJ
507854	BITP-RAW	Methoxychlor	ND	EPA 505	UJ
507854	BITP-RAW	PCB 1016 Aroclor	ND	EPA 505	UJ
507854	BITP-RAW	PCB 1221 Aroclor	ND	EPA 505	UJ
507854	BITP-RAW	PCB 1232 Aroclor	ND	EPA 505	UJ
507854	BITP-RAW	PCB 1242 Aroclor	ND	EPA 505	UJ
507854	BITP-RAW	PCB 1248 Aroclor	ND	EPA 505	UJ
507854	BITP-RAW	PCB 1254 Aroclor	ND	EPA 505	UJ
507854	BITP-RAW	PCB 1260 Aroclor	ND	EPA 505	UJ
507854	BITP-RAW	Total PCBs	ND	EPA 505	UJ

Lab Report	Sample ID	Analyte	Sample Result	Analytical Method	Qual
507854	BITP-RAW	Toxaphene	ND	EPA 505	UJ
507854	BITP-RAW	BDE-100	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	BDE-153	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	BDE-154	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	BDE-183	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	BDE-209	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	BDE-28	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	BDE-47	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	BDE-99	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	Bifenthrin	ND	GC-QQQ PBDE	UJ
507854	BITP-RAW	cis-Permethrin	8.7 ng/L	GC-QQQ PBDE	J-
507854	BITP-RAW	Fipronil	4.1 ng/L	GC-QQQ PBDE	J-
507854	BITP-RAW	Total Permethrin	24 ng/L	GC-QQQ PBDE	J-
507854	BITP-RAW	trans-Permethrin	13 ng/L	GC-QQQ PBDE	J-
507854	MWRWP-RAW	Alachlor (Alanex)	ND	EPA 505	UJ
507854	MWRWP-RAW	Aldrin	ND	EPA 505	UJ
507854	MWRWP-RAW	Chlordane	ND	EPA 505	UJ
507854	MWRWP-RAW	Dieldrin	ND	EPA 505	UJ
507854	MWRWP-RAW	Endrin	ND	EPA 505	UJ
507854	MWRWP-RAW	Heptachlor	ND	EPA 505	UJ
507854	MWRWP-RAW	Heptachlor Epoxide	ND	EPA 505	UJ
507854	MWRWP-RAW	Lindane (gamma-BHC)	ND	EPA 505	UJ
507854	MWRWP-RAW	Methoxychlor	ND	EPA 505	UJ
507854	MWRWP-RAW	PCB 1016 Aroclor	ND	EPA 505	UJ
507854	MWRWP-RAW	PCB 1221 Aroclor	ND	EPA 505	UJ
507854	MWRWP-RAW	PCB 1232 Aroclor	ND	EPA 505	UJ
507854	MWRWP-RAW	PCB 1242 Aroclor	ND	EPA 505	UJ
507854	MWRWP-RAW	PCB 1248 Aroclor	ND	EPA 505	UJ
507854	MWRWP-RAW	PCB 1254 Aroclor	ND	EPA 505	UJ
507854	MWRWP-RAW	PCB 1260 Aroclor	ND	EPA 505	UJ
507854	MWRWP-RAW	Total PCBs	ND	EPA 505	UJ
507854	MWRWP-RAW	Toxaphene	ND	EPA 505	UJ
507854	MWRWP-RAW	1,4-Dioxane	0.46 ug/L	EPA 522	J-
507854	MWRWP-RAW	Di(2-Ethylhexyl)phthalate	2.6 ug/L	EPA 525.2	J+
507854	MWRWP-RAW	BDE-100	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	BDE-153	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	BDE-154	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	BDE-183	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	BDE-209	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	BDE-28	ND	GC-QQQ PBDE	UJ

Lab Report	Sample ID	Analyte	Sample Result	Analytical Method	Qual
507854	MWRWP-RAW	BDE-47	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	BDE-99	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	Bifenthrin	ND	GC-QQQ PBDE	UJ
507854	MWRWP-RAW	cis-Permethrin	7.8 ng/L	GC-QQQ PBDE	J-
507854	MWRWP-RAW	Fipronil	2.7 ng/L	GC-QQQ PBDE	J-
507854	MWRWP-RAW	Total Permethrin	18 ng/L	GC-QQQ PBDE	J-
507854	MWRWP-RAW	trans-Permethrin	9.8 ng/L	GC-QQQ PBDE	J-
517350	MWRWP-RAW	N-Nitroso dimethylamine	ND	EPA 521	UJ
517384	BITP-RAW	N-Nitroso dimethylamine	ND	EPA 521	UJ
517384	BITP-RAW	1,4-Dioxane	0.26 ug/L	EPA 522	J-
517384	BITP-RAW	BDE-100	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	BDE-153	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	BDE-154	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	BDE-183	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	BDE-209	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	BDE-28	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	BDE-47	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	BDE-99	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	Bifenthrin	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	cis-Permethrin	14 ng/L	GC-QQQ PBDE	J-
517384	BITP-RAW	Fipronil	ND	GC-QQQ PBDE	UJ
517384	BITP-RAW	Total Permethrin	33 ng/L	GC-QQQ PBDE	J-
517384	BITP-RAW	trans-Permethrin	19 ng/L	GC-QQQ PBDE	J-
518510	BITP-RAW	PCB 1016 Aroclor	ND	EPA 505	UJ
518510	BITP-RAW	PCB 1254 Aroclor	ND	EPA 505	UJ
518510	BITP-RAW	Heptachlor Epoxide	ND	EPA 505	UJ
518510	BITP-RAW	Lindane (gamma-BHC)	ND	EPA 505	UJ
518510	BITP-RAW	Methoxychlor	ND	EPA 505	UJ
518510	BITP-RAW	Chlordane	ND	EPA 505	UJ
518510	BITP-RAW	Toxaphene	ND	EPA 505	UJ
518510	BITP-RAW	Total PCBs	ND	EPA 505	UJ
518510	BITP-RAW	PCB 1242 Aroclor	ND	EPA 505	UJ
518510	BITP-RAW	Heptachlor	ND	EPA 505	UJ
518510	BITP-RAW	Aldrin	ND	EPA 505	UJ
518510	BITP-RAW	Endrin	ND	EPA 505	UJ
518510	BITP-RAW	PCB 1221 Aroclor	ND	EPA 505	UJ
518510	BITP-RAW	PCB 1248 Aroclor	ND	EPA 505	UJ
518510	BITP-RAW	PCB 1260 Aroclor	ND	EPA 505	UJ
518510	BITP-RAW	Alachlor (Alanex)	ND	EPA 505	UJ
518510	BITP-RAW	Dieldrin	ND	EPA 505	UJ

Lab Report	Sample ID	Analyte	Sample Result	Analytical Method	Qual
518510	BITP-RAW	PCB 1232 Aroclor	ND	EPA 505	UJ
518510	BITP-RAW	N-Nitroso dimethylamine	ND	EPA 521	UJ
518510	BITP-RAW	1,4-Dioxane	0.29 ug/L	EPA 522	J-
518510	BITP-RAW	BDE-153	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	Fipronil	5.1 ng/L	GC-QQQ PBDE	J-
518510	BITP-RAW	BDE-209	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	BDE-100	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	BDE-99	8.4 ng/L	GC-QQQ PBDE	J-
518510	BITP-RAW	cis-Permethrin	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	Bifenthrin	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	BDE-154	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	BDE-183	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	BDE-47	9.9 ng/L	GC-QQQ PBDE	J-
518510	BITP-RAW	BDE-28	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	trans-Permethrin	ND	GC-QQQ PBDE	UJ
518510	BITP-RAW	Total Permethrin	ND	GC-QQQ PBDE	UJ
521367	BITP-RAW	N-Nitroso dimethylamine	ND	EPA 521	UJ
535546	MWRWP-RAW	N-Nitroso dimethylamine	ND	EPA 521	UJ
535546	MWRWP-RAW	BDE-100	ND	GC-QQQ PBDE	UJ
535546	MWRWP-RAW	BDE-153	ND	GC-QQQ PBDE	UJ
535546	MWRWP-RAW	BDE-154	ND	GC-QQQ PBDE	UJ
535546	MWRWP-RAW	BDE-183	ND	GC-QQQ PBDE	UJ
535546	MWRWP-RAW	BDE-209	ND	GC-QQQ PBDE	UJ
535546	MWRWP-RAW	BDE-28	ND	GC-QQQ PBDE	UJ
535546	MWRWP-RAW	BDE-47	5.3 ng/L	GC-QQQ PBDE	J-
535546	MWRWP-RAW	BDE-99	5.5 ng/L	GC-QQQ PBDE	J-
535546	MWRWP-RAW	Bifenthrin	ND	GC-QQQ PBDE	UJ
535546	MWRWP-RAW	cis-Permethrin	28 ng/L	GC-QQQ PBDE	J-
535546	MWRWP-RAW	Fipronil	2.9 ng/L	GC-QQQ PBDE	J-
535546	MWRWP-RAW	Total Permethrin	65 ng/L	GC-QQQ PBDE	J-
535546	MWRWP-RAW	trans-Permethrin	37 ng/L	GC-QQQ PBDE	J-
535637	BITP - Reclaimed	BDE-28	ND	GC-QQQ PBDE	UJ
535637	BITP - Reclaimed	BDE-47	ND	GC-QQQ PBDE	UJ
535637	BITP - Reclaimed	Bifenthrin	ND	GC-QQQ PBDE	UJ
535637	BITP - Reclaimed	Fipronil	ND	GC-QQQ PBDE	UJ
549211	MWRWP-RAW	Dieldrin	ND	EPA 505	UJ
549211	MWRWP-RAW	Heptachlor	ND	EPA 505	UJ
549211	MWRWP-RAW	Lindane (gamma-BHC)	ND	EPA 505	UJ
549211	MWRWP-RAW	Toxaphene	ND	EPA 505	UJ
549211	MWRWP-RAW	PCB 1016 Aroclor	ND	EPA 505	UJ

Lab Report	Sample ID	Analyte	Sample Result	Analytical Method	Qual
549211	MWRWP-RAW	Aldrin	ND	EPA 505	UJ
549211	MWRWP-RAW	Methoxychlor	ND	EPA 505	UJ
549211	MWRWP-RAW	PCB 1232 Aroclor	ND	EPA 505	UJ
549211	MWRWP-RAW	PCB 1221 Aroclor	ND	EPA 505	UJ
549211	MWRWP-RAW	PCB 1248 Aroclor	ND	EPA 505	UJ
549211	MWRWP-RAW	PCB 1242 Aroclor	ND	EPA 505	UJ
549211	MWRWP-RAW	Heptachlor Epoxide	ND	EPA 505	UJ
549211	MWRWP-RAW	PCB 1260 Aroclor	ND	EPA 505	UJ
549211	MWRWP-RAW	Chlordane	ND	EPA 505	UJ
549211	MWRWP-RAW	PCB 1254 Aroclor	ND	EPA 505	UJ
549211	MWRWP-RAW	Alachlor (Alanex)	ND	EPA 505	UJ
549211	MWRWP-RAW	Endrin	ND	EPA 505	UJ
549211	MWRWP-RAW	Total PCBs	ND	EPA 505	UJ

LABORATORY MATRIX SPIKE/MATIRX SPIKE DUPLICATES (MS/MSD) RECOVERIES and RELATIVE PERCENT DIFFERENCES (RPD)

To assess potential matrix effects, an environmental sample and a duplicate are spiked with known concentrations of target analytes. The percent recovery of the target analytes is compared to statistical control limits.

Analytes that failed both MS and MSD are qualified as estimated. Analytes that were not detected and that had MS/MSD recoveries below 10 percent were rejected. Analytes that failed on only the MSD are considered acceptable and the data are not qualified for these analytes. Sample concentrations that exceed the spike added concentrations by more than a factor of four are not flagged.

MS and MSD recoveries were all within the QC limits with the following exceptions noted in Table 5. In addition, in instances where the spike recovery is high, but the results is ND, there is no impact on the data since ND with high recovery is still ND. Samples spiked for MS/MSD from non-LOTT projects were not evaluated.

Table 5. Laboratory Matrix Spikes and Spike Duplicates Exceeding QC Limits

Lab Report	Sample ID	Analyte	Sample Result	MS % Yield	MSD % Yield	QC Limits (%)	qualifier
		Atenolol	27 ng/L	53	57	60-140	J-
		Carbadox	ND	2.7	2.7	60-140	R
		Chloridazon	ND	24	22	60-140	UJ
		Cimetidine	ND	14	12	60-140	UJ
	MWRWP-Wetland	Endrin Aldehyde	ND	45	31	70-140	UJ
507838	WWW.VWF-Welland	Erythromycin	10 ng/L	246	269	60-140	J+
		Fluoxetine	72 ng/L	178	177	60-140	J+
		Orthophosphate as P	3.6 mg/L	74	75	90-110	J-
		Sulfachloropyridazine	ND	17	18	60-140	UJ
		TCEP	74 ng/L	39	32	60-140	J-
	MWRWP-Wetland- dissolved	Zinc dissolved ICAP/MS	110 ug/L	214	213	70-130	J+
507852	DUP MWRWP-Basin - dissolved	Zinc dissolved ICAP/MS	51 ug/L	157	155	70-130	J+
		Atenolol	36 ng/L	55	57	60-140	J-
		Carbadox	ND	2.7	2.7	60-140	R
		Cimetidine	ND	14	12	60-140	UJ
507862	MWRWP-Reclaimed	Endrin Aldehyde	ND	45	31	70-140	UJ
307002	WWW.VWF-Reclaimed	Erythromycin	16 ng/L	246	269	60-140	J+
		Fluoxetine	65 ng/L	178	177	60-140	J+
		Sulfachloropyridazine	ND	17	18	60-140	UJ
		TCEP	39 ng/L	39	32	60-140	J-
517384	BITP-RAW	Chemical Oxygen Demand (COD)	740 mg/L	-2.39	-25.1	90-110	J-

Lab Report	Sample ID	Analyte	Sample Result	MS % Yield	MSD % Yield	QC Limits (%)	qualifier
		Chemical Oxygen Demand (COD)	14 mg/L	78	88	90-110	J-
		Acesulfame-K	12000 ng/L	3530	3460	60-140	J+
		Sucralose	43000 ng/L	1800	1540	60-140	J+
		1,7-Dimethylxanthine	ND	0.280	0.394	60-140	R
		Chloridazon	ND	33	24	60-140	UJ
		Cotinine	38 ng/L	161	161	60-140	J
	BITP - Reclaimed	DACT	5 ng/L	34	33	60-140	J-
E0E607		Diuron	ND	50	54	60-140	UJ
535637		Fluoxetine	31 ng/L	50	58	60-140	J-
		Lidocaine	ND	32	35	60-140	UJ
		Lopressor	170 ng/L	34	34	60-140	J-
		Meprobamate	22 ng/L	42	41	60-140	J-
		Pentoxifylline	9.9 ng/L	-3.76	-9.92	60-140	J-
		Sulfachloropyridazine	ND	55	53	60-140	UJ
		Sulfadiazine	ND	0.990	0.500	60-140	R
		Sulfamerazine	ND	42	36	60-140	UJ
556958	MWRWP-Basin-Dissolved	Orthophosphate as P	3.8 mg/L	26	25	90-110	J-

Lab Report	Sample ID	Analyte	Sample Result	MS % Yield	MSD % Yield	QC Limits (%)	qualifier
		4-n-Octylphenol diethoxylate	ND	45	54	60-140	IJ
		Perfluoro butanoic acid- PFBA	ND	30	28	70-130	UJ
		Perfluoro-n-decanoic acid	ND	21	14	70-130	IJ
		Perfluoropentanoic acid	93 ng/L	-224	-229	70-130	J-
		Perfluoro octanesulfonate-PFOS	ND	15	7.6	70-130	J
		Perfluoro-n-nonanoic acid	ND	22	16	70-130	IJ
		Perfluoro octanesulfonic acid - PFOS	ND	14	7.5	70-130	J
		Heptachlor Epoxide	ND	51	52	65-135	UJ
		Perfluoro-1-hexanesulfonate	ND	33	24	70-130	J
556958	MWRWP-Basin	Perfluoro octanoic acid - PFOA	22 ng/L	33.8	39.2	70-130	J-
		Perfluoro-1-butanesulfonate	12 ng/L	-7.6	-8	70-130	J-
		Perfluoro-1-hexanesulfonic acid	ND	33	24	70-130	IJ
		Perfluoro-n-hexanoic acid	68 ng/L	-159	-158	70-130	J-
		Perfluoro-1-butanesulfonic acid	12 ng/L	-8.85	57	70-130	J-
		Chloramphenicol	ND	46	46	60-140	IJ
		Perfluoro-n-heptanoic acid	ND	44	47	70-130	UJ
		Orthophosphate as P	3.7 mg/L	36	42	90-110	J-
		1,4-Dioxane	0.55 ug/L	186	207	50-150	J+
		Sucralose	68000 ng/L	-70.1	-410	60-140	J-

The relative percent difference (RPD) for the MS/MSDs were within acceptable laboratory tolerances, with the following exceptions. Samples were qualified as estimates.

Table 6. Laboratory Matrix Spikes and Spike Duplicate RPDs Exceeding QC Limits

					QC	
Lab Report	Sample	Analyte	Sample Result	MS/MSD RPD (%)	Limits (%)	Qualifier
-		•				
507862	MWRWP-Reclaimed	Primidone	64 ng/L	76	40	J+
507838	MWRWP-Wetland	Primidone	170 ng/L	76	40	J+
535637	BITP - Reclaimed	TDCPP	310 ng/L	150	60	J
556958	MWRWP-Basin	4-tert-octylphenol	55 ng/L	43	40	J
556958	MWRWP-Basin	Perfluoro-1- butanesulfonic acid	12 ng/L	88	30	J-
518516	MWRWP-Wetland	Kjeldahl Nitrogen	0.97 mg/L	20	10	J

LABORATORY CONTROL SAMPLE (LCS) RECOVERIES

Laboratory Control Samples (LCS) are samples of known concentration that are carried through the extraction and analysis process. The percent recovery is the percentage of the theoretical concentration, and has statistical control limits indicating that the analytical process is "in control."

An LCS sample was run in duplicate with the work order samples. LCS recoveries were all within the QC limits with the exceptions noted in Table 4. In addition, in instances where the LCS recovery is high, but the sample result is ND, there is no impact on the data since ND with high recovery is still ND.

Table 7. Laboratory Control Samples Exceeding QC Limits

Lab			Sample	LCS Yield	QC	
Report	Sample ID	Analyte	Result	(%)	Limits	Qualifier
507852	DUP MWRP-Basin	BDE-153	ND	69	70-130	UJ
507852	DUP MWRP-Basin	BDE-154	ND	67	70-130	UJ
507852	DUP MWRP-Basin	BDE-209	ND	50	70-130	UJ
507854	MWRWP-RAW	BDE-100	ND	69	70-130	UJ
507854	MWRWP-RAW	BDE-153	ND	69	70-130	UJ
507854	MWRWP-RAW	BDE-154	ND	67	70-130	UJ
507854	MWRWP-RAW	BDE-209	ND	50	70-130	UJ
507854	MWRWP-RAW	Ammonia Nitrogen	44 mg/L	111	90-110	J+
507862	MWRWP-Reclaimed	BDE-100	ND	69	70-130	UJ
507862	MWRWP-Reclaimed	BDE-153	ND	69	70-130	UJ
507862	MWRWP-Reclaimed	BDE-154	ND	67	70-130	UJ
507862	MWRWP-Reclaimed	BDE-209	ND	50	70-130	UJ
507862	BITP-Reclaimed	BDE-100	ND	69	70-130	UJ
507862	BITP-Reclaimed	BDE-153	ND	69	70-130	UJ
507862	BITP-Reclaimed	BDE-154	ND	67	70-130	UJ
507862	BITP-Reclaimed	BDE-209	ND	50	70-130	UJ

507862	BITP-Reclaimed	Ammonia Nitrogen	2.9 mg/L	111	90-110	J+
507854	BITP-RAW	BDE-100	ND	69	70-130	UJ
507854	BITP-RAW	BDE-153	ND	69	70-130	UJ
507854	BITP-RAW	BDE-154	ND	67	70-130	UJ
507854	BITP-RAW	BDE-209	ND	50	70-130	UJ
517384	BITP-RAW	BDE-209	ND	67	70-130	UJ
517386	MWRWP-Reclaimed	BDE-209	ND	64	70-130	UJ
517386	MWRWP-Reclaimed	Chloroform (Trichloromethane)	12 ug/L	144	70-130	J+
535637	BITP - Reclaimed	BDE-209	ND	64	70-130	UJ
517388	MWRWP-Basin	BDE-209	ND	64	70-130	UJ
517388	MWRWP-Basin	Chloroform (Trichloromethane)	5.7 ug/L	144	70-130	J+
549205	MWRWP-Reclaimed	4-nonylphenol - semi quantitative	110 ng/L	161	60-140	J
518516	MWRWP-Wetland	4-nonylphenol - semi quantitative	180 ng/L	161	60-140	J

The RPD for the LCS samples were within acceptable laboratory tolerances, with the following exceptions. Samples were qualified as estimates.

Table 8. Laboratory Control Spike and Spike Duplicate RPDs Exceeding QC Limits

		- ж	Sample	LCS RPD	QC Limits	
Lab Report	Sample ID	Analyte	Result	(%)	(%)	Qualifier
507854	MWRWP-RAW	Perfluoro octanoic acid - PFOA	5.5 ng/L	30	20	J
507862	MWRWP-Reclaimed	Perfluoro octanoic acid - PFOA	16 ng/L	30	20	J
507862	BITP-Reclaimed	Perfluoro octanoic acid - PFOA	7.4 ng/L	30	20	J
517384	BITP-RAW	Azithromycin	330 ng/L	43	30	J
535546	MWRWP-RAW	Azithromycin	210 ng/L	43	30	J
517386	MWRWP-Reclaimed	Chloroform (Trichloromethane)	12 ug/L	25	20	J+
535637	BITP - Reclaimed	TDCPP	310 ng/L	40	30	J
517388	MWRWP-Basin	Chloroform (Trichloromethane)	5.7 ug/L	25	20	J+
549211	MWRWP-RAW	Quinoline	250 ng/L	39	30	J
549211	MWRWP-RAW	TDCPP	510 ng/L	37	30	J
549211	MWRWP-RAW	Atenolol	1500 ng/L	45	30	J
549205	MWRWP-Reclaimed	Atenolol	62 ng/L	45	30	J
556958	MWRWP-Basin	TDCPP	170 ng/L	37	30	J
556958	MWRWP-Basin	Atenolol	25 ng/L	45	30	J
518516	MWRWP-Wetland	Atenolol	44 ng/L	45	30	J
518510	BITP-RAW	Cotinine	2,400 ng/L	36	30	J
518510	BITP-RAW	Albuterol	46 ng/L	33	30	J

LABORATORY METHOD BLANK

An aliquot of reagent water was carried through the entire analytical process. The method blank results indicate any possible contamination exposure during the sample handling, digestion, or

extraction process and analysis. In most instances, compounds were not detected at or above the method reporting limits. If the target analyte was detected in the blank, but the sample was ND, no qualification was made. If the sample result was less than 10 times the result of the method blank, the sample was qualified as an estimate biased high. The following qualifications were made based on this criterion.

Table 9. Method Blanks Results

Lab Sample Blank							
Report	Sample ID	Analyte	Result	Result	Qualifier		
507838	MWRP-Basin	Dissolved Organic Carbon - Initial	5.2 mg/L	0.796 mg/L	J+		
507838	MWRWP-Wetland	Dissolved Organic Carbon - Initial	5.4 mg/L	0.796 mg/L	J+		
507852	DUP MWRP-Basin	Dissolved Organic Carbon - Initial	4.5 mg/L	0.796 mg/L	J+		
507862	MWRWP-Reclaimed	Biodegradable Dis. Org. Carbon	0.76 mg/L	0.438 mg/L	J+		
507862	MWRWP-Reclaimed	Dissolved Organic Carbon - Initial	5.5 mg/L	0.796 mg/L	J+		
507862	BITP-Reclaimed	Biodegradable Dis. Org. Carbon	0.7 mg/L	0.438 mg/L	J+		
507862	BITP-Reclaimed	Dissolved Organic Carbon - Initial	4.8 mg/L	0.796 mg/L	J+		
507866	BITPW-SECONDARY	Dissolved Organic Carbon - Initial	5.5 mg/L	0.796 mg/L	J+		
517355	MWRWP-Reclaimed	Biodegradable Dis. Org. Carbon	0.62 mg/L	0.307 mg/L	J+		
517355	MWRWP-Reclaimed	Dissolved Organic Carbon - Initial	5.9 mg/L	0.772 mg/L	J+		
517386	MWRWP-Reclaimed	Dissolved Organic Carbon - Initial	6.5 mg/L	0.780 mg/L	J+		
535637	BITP - Reclaimed	Dissolved Organic Carbon - Initial	7.1 mg/L	0.780 mg/L	J+		
517388	MWRWP-Basin	Dissolved Organic Carbon - Initial	6.6 mg/L	0.780 mg/L	J+		
556958	MWRWP-Basin	Dissolved Organic Carbon - Initial	4.9 mg/L	0.694 mg/L	J+		
518516	MWRWP-Wetland	Dissolved Organic Carbon - Initial	5.2 mg/L	0.694 mg/L	J+		
518512	BITP-Reclaimed	Dissolved Organic Carbon - Initial	6.5 mg/L	0.730 mg/L	J+		
518517	BITPW-SECONDARY	Dissolved Organic Carbon - Initial	6.9 mg/L	0.730 mg/L	J+		
518517	BITPW-SECONDARY	Azithromycin	65 ng/L	63.3 ng/L	J+		

DUPLICATE FIELD SAMPLE

A duplicate sample was secured for MWRP-Basin (Duplicate: DUP- MWRP-Basin). RPDs ranged from 0% to 83%. Generally, a RPD of less than 20 percent is desirable. Table 10 lists the RPDs that exceeded 20%, for which J qualifiers were noted (both for the parent and duplicate samples).

Table 10. Relative Percent Difference (RPD) Exceeding 20% for Duplicate Sample from ${\bf MWRP\text{-}Basin}$

Analyte	DUP MWRP-Basin	MWRP-Basin	RPD	Qual.
Atenolol	6.3	9.4	39%	J
Bromacil	5.8	14	83%	J
DEA	20	13	42%	J
Estrone (low detection)	1	0.77	26%	J
Fluoride	0.066	0.087	27%	J
Gemfibrozil	33	14	81%	J
Iohexal	300	230	26%	J
Lidocaine	9.1	12	27%	J
Perfluoropentanoic acid	45	31	37%	J
Somatic coliphage titer	14	20	35%	J
Sucralose	54,000	33,000	48%	J
Sulfamethoxazole	36	50	33%	J
TCEP	46	66	36%	J
TDCPP	170	210	21%	J
Thiabendazole	480	600	22%	J

RPD = [(Parent Sample) – (Duplicate)]/[mean(Parent Sample, Duplicate)] X 100

Attachment A Hold Time Study Documentation

Memorandum

To: Wendy Steffensen, LOTT Clean Water Alliance	
From: John Koreny and Jeff Hansen, HDR	Project: LOTT Reclaimed Water Infiltration Study
CC:	
Date: November 9, 2016	Job No: 238761

RE: Hold Time Analysis, PPCPs and Metformin

Background

Eurofins Eaton Analytical, Inc. (EEA), the laboratory under contract to provide analytical services in support of LOTT's Reclaimed Water Infiltration Study, or RWIS) has completed an analysis to determine the effects of extended hold times on pharmaceuticals and personal care products (PPCPs), perfluorinated compounds (PFCs) and metformin (referred to collectively as "residual chemicals" in the RWIS). This analysis was completed to address questions that have arisen regarding the 28 to 70 day hold times that occurred between sample collection and analysis during the 2015 groundwater, surface water, and reclaimed water quality characterization efforts regarding PPCPs, PFCs and metformin. Although EEA's laboratory method has no formalized hold times for these compounds, these hold times are longer than the 28 day analytical schedule EEA customarily utilizes for processing such samples. (Other parameters analyzed as part of the RWIS were almost all run within established formal hold times.) The full details of this issue are explained in a May, 16, 2016 memorandum by HDR.

Some of the reviewers of the draft Task 1 (Water Quality Characterization) technical memoranda have asked whether extended hold times for these compounds may have caused bias in the reported concentrations of PPCPs, PFCs and metformin. In response, EEA prepared information documenting that PFCs are very stable with hold times past 70 days (presented in the HDR May 16, 2016 memorandum). EEA also agreed to conduct a hold time study evaluating the effects of extending the hold times to 70 days for PPCPs and metformin. The methods and results of that study are presented in EEA's November 4, 2016 report, "Holding Time Study Results for PPCPs and Metformin, LOTT Clean Water Alliance Project," and the full analytical results are presented in an electronic spreadsheet. Both items are incorporated by reference to this memorandum.

Summary of Method

A full explanation of EEA's methods are presented in EEA's November 4, 2016 report. A brief description is below:

- Three Class A reclaimed water samples (each comprised of four 1-liter bottles with preservative) were collected at the Martin Way Reclaimed Water Plant on June 15, 2016. Upon receipt by EEA, the four bottles comprising each sample were composited so as to provide 4-liter sample volumes for each sample. These were then analyzed for PPCPs and metformin. Between 19 and 22 compounds were detected above the method detection limits in the three samples.
- One sample was then spiked on June 30, 2016, with a known concentration in the range of 1 to 4 parts per billion (ppb) for each of 98 compounds. Eleven replicates of the spiked sample were each run on LC-MS-MS instrumentation at 0, 2, 4, 7, 16, 30, 45, 60, 69 and 84 days after the spike. For each run, a 1 to 10 dilution was employed to ensure that the results were within the

range of the LOTT sample results and within the range of the calibration curve for the instrument.

 Two Laboratory Control Samples (LCS) were prepared using spiked reagent water and run for each of the periods specified above. The purpose of the LCS is to identify the range of variability in the method and instrument results.

Summary of Results

The results of the study indicate that 90 of the 98 compounds evaluated appear to remain stable throughout the 84 day period. Eight compounds appear to show evidence of degradation or analytical variability.

- Two compounds (metazachlor and metolachlor) begin to degrade after approximately two
 weeks. "R" data quality flags are recommended for samples analyzed after approximately two
 weeks indicating that the data are unreliable. An "R" flag indicates that, "The sample results are
 rejected due to serious deficiencies in the ability to analyze the sample and meet quality control
 criteria. The presence or absence of the analyte cannot be verified." (Ecology, 2016)¹.
- Four compounds (amoxicillin, azithromycin, cimetidine, and nonyl-phenol) show analytical variability on individual days and between days. Therefore, the results for those should be considered semi quantitative (i.e., concentration results are estimates). "J" data quality flags are recommended in the reports for all of the results for these compounds. A "J" flag indicates that, "The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample." (Ecology, 2016).
- Two compounds (nifedipine and theophyline) show concentrations consistently under or over the laboratory control sample (LCS) limits, but no evidence of inconsistent variability or degradation. This appears to be the result of a sample matrix effect or calibration artifact for this sample. "J" data quality flags are recommended for these two compounds.

Recommendations

The following recommendations are proposed for the technical memoranda documenting the 2015 groundwater, surface water and wastewater/reclaimed water sampling and water quality analysis.

- The EEA November 4, 2016 hold time study report will be included by reference into each of HDR's reports. The results will be summarized in the laboratory data validation section of each report.
- The laboratory data summary tables will be flagged as suggested by EEA (and as summarized above).
 - Because all metazachlor and metolachlor samples were analyzed past a two week hold time, all of the results for these two parameters will be assigned an "R" data quality flag.
 - All amoxicillin, azithromycin, cimetidine, nifedipine, nonyl-phenol and theophyline results will be assigned a "J" data quality flag. All of these chemicals (with the exception of theophyline, which was not included in the original list of analytes sampled for in wastewater and reclaimed water) were detected at least once in raw wastewater, while only nifedipine and nonyl-phenol were also detected in reclaimed water. None of these compounds were detected in any of the groundwater and surface water samples, with the exception of a detection of nonyl-phenol in one groundwater well.

¹ Source: http://www.ecy.wa.gov/programs/eap/mar_wat/datacodes.html.

- All other data quality flags regarding hold times will be removed for PPCPs, PFCs and metformin from the summary tables in the report.
- Future PPCP, PFC and metformin analysis for the LOTT RWIS project will be run within a 28-day hold time from the date of sample collection.

November 4, 2016

To: John Koreny and Jeff Hansen, HDR Engineering, Inc.

From: Andy Eaton and Ali Haghani, Eurofins Eaton Analytical, Inc. (EEA)

cc: Vanessa Berry (EEA), Brad Cahoon (EEA), Daniel Lashbrook (EEA), Robert Dean (EEA)

Subject: Holding Time Study Results for PPCPs (EEA Method 9609 and Metformin), LOTT Clean Water Alliance Project

Introduction

A study was completed by Eurofins Eaton Analytical, Inc. (EEA) to determine the effects of holding preserved refrigerated water samples for a period of up to 84 days (12 weeks) prior to analysis using EEA's Method 9609 "Pharmaceuticals and Personal Care Products (PPCPs)" and Metformin. This study was completed as part of the LOTT Clean Water Alliance (LOTT) project evaluating the presence of PPCPs (also referred to by LOTT as Residual Chemicals) in surface water, groundwater and treated wastewater (reclaimed water) in the South Puget Sound area of Washington State. The reason for conducting the hold time study is that during the prior sampling of groundwater, surface water and reclaimed water, hold times were up to 10 weeks after sampling for the PPCP and Metformin laboratory analysis. The purpose of the hold time study is to examine the effects these extended hold times may have on the analytical results and to recommend whether data quality flags should be included in laboratory reporting.

The hold time study was completed by spiking one reclaimed water sample with a known concentration of the target PPCP compounds and performing 11 replicate analyses on the sample each at periods of 0, 2, 4, 7, 16, 30, 45, 60, 69, and 84 days.

The results of the study indicate that 92 out of the 98 compounds reported appear to remain stable through the length of the hold time study. Six compounds appear to show evidence of either degradation or analytical variability.

- Two compounds (metazachlor and metolachlor) begin to degrade after approximately 2 weeks. "R" data quality flags are recommended in the reports for all of the results for these compounds after degradation starts.
- Additionally, four compounds (amoxicillin, azithromycin, cimetidine, and nonylphenol) show analytical variability on individual days and between days; thus, results for those should be considered semi quantitative (results are estimates).
 "J" flags are recommended in the reports for all of the results for these compounds.

In addition, two compounds (nifedipine and theophyline) show concentrations consistently under or over the laboratory control sample (LCS) limits, but no evidence of inconsistent variability or degradation. This appears to be the result of a sample matrix effect or calibration artifact for this sample. "J" flags are recommended in the reports for these compounds.

Methods

The methods used for the holding time study are summarized below.

- Three 4-liter grab samples were collected by HDR from the LOTT Martin Way Reclaimed Water Plant on June 15, 2016, using bottles provided by EEA, containing sodium omadine and ascorbic acid as preservatives. The samples were placed on ice and transmitted by next-day air delivery to EEA's laboratory in Monrovia, California.
- The three 4-liter samples were received on June 16, 2016 and were each
 composited to create samples A, B and C. The three samples were analyzed
 using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS-MS) as per
 the Method 9609 process on June 16 and for metformin on June 17, within 2
 days of receipt, and retested the following week using high resolution mass
 spectrometry.
- All of the samples exhibited similar results. However, Sample A was chosen for the hold time study because it had fewer unknown peaks than the other two after looking at the full scan high resolution mass spectrometry data.
- EEA then prepared the spike sample on June 30, 2016, which was 15 days after the sample was collected. EEA spiked a 100 ml aliquot of Sample A with 1- 4 ppb of each target analyte and then transferred it to 5ml amber vials and stored refrigerated.
- The spiked Sample A was then run on the LC-MS-MS at periods of 0, 2, 4, 7, 16, 30, 45, 60, 69, and 84 days after spiking the sample on June 30, 2016. For each run, one of the vials was brought to room temperature, diluted 1/10 into 11 auto-sampler vials, the internal standard was added, and each vial analyzed. The 1/10 dilution ensured that all compounds would be within the range of the results for the LOTT study and within the range of the calibration curve (so multiple dilutions would not be required and the study could be completed within the allocated time period). Eleven replicates were analyzed on each day in order to provide a more robust understanding of the effects of hold times and analytical precision.

- With each batch we included two freshly prepared Laboratory Control Standards (LCS) consisting of reagent water spiked with the target analytes, to monitor instrument performance in the absence of matrix effects and holding time effects.
- Fresh calibration working stock standards (WSS) were prepared periodically, as
 noted below. Calibration stock preparation dates are indicated on the raw data
 worksheets. The original calibration standard was changed after 16 days
 because we started at that time to see changes in albuterol and we were not sure
 if it was the matrix or the WSS. After day 16 a fresh working stock standard was
 prepared for calibrations and the LCS for each analytical sequence to avoid any
 questions regarding calibration stability.

Results

Evaluation of Results

- Results are presented in the form of percent recoveries (i.e., with 100% reflecting
 the known spiked concentration). To facilitate analysis of the data for observing
 trends, all results were normalized to the day 0 recoveries by averaging all 11 of the
 day 0 recovery measurements (measurements made the same day as the sample
 was spiked) for each compound and comparing subsequent measurements to that
 average.
- To evaluate possible degradation, data were compared to both recovery ranges calculated from both the 20 LCS samples analyzed with these holding time samples and the limits set in the lab Laboratory Information Management System (LIMS) database for the LCS samples, which are based on longer term observed historical precision. Additionally, when the compounds were also included in EPA method 1694, results were reviewed against the limits found in that method, which are generally much wider than the EEA limits. Note that all of these limits are for reagent water and do not take into account any matrix effects expected from analyzing reclaimed water samples.
- In some cases data are missing for a particular analyte on some days because the
 calibration did not come out on that day for that compound or no peak was identified
 by the mass spectrometer. The causes for these aberrant data are not clear. These
 are shown as blanks in the tables and Excel workbook.

Presentation of Results

The project results are summarized in Tables 1 to 3. Table 1 includes the summary data (normalized against day 0) and the EEA conclusions regarding stability. Table 2 includes the LCS limits, as described below. Table 3 includes the raw data, as described below.

Also, the full analytical data package is provided electronically in the Excel workbook titled, "HDR-Lott project holding time study 20160929". The Excel workbook has multiple tabs within it, including:

- Tab "raw data": Raw data as percent recovery not normalized and normalized results compared to the average of day 0 recoveries and standard deviations and relative standard deviations of the 11 replicates on each day
- Tab "LCS Calculated Control Limits": Upper and lower Laboratory Control Sample (LCS) control limits calculated from the 20 associated QC samples (LCS – spiked reagent water).
- Tab "Summary and Conclusions": Summary of normalized data, LCS limits, and EEA conclusions on stability of each compound
- Tab "HDR Target List": HDR target analyte list.
- o Tab "1694 QC limits": LCS limits found in EPA method 1694.
- Tab "Spiked levels": Spiking levels for each compound for holding time study and concentration expected in samples when analyzed
- Tab "WSS recoveries over time": Information on working stock standard recoveries reanalyzed on each day with the new WSS used for calibration on that analysis day to determine any potential problems with standard preparation on a given day.
- Tab "Rerun WSS day 0": Ratio of working stock standard (WSS) from analysis day compared to initial day 0 WSS (based on the average of the LCS samples on day 0 which were prepared from the day 0 WSS). This is another way to determine if compounds in individual WSS might have been incorrectly prepared on a given day or even if the day 0 WSS had any preparation issues. Note that the primary stock standard diluted and used to prepare the WSS was not changed through the course of the study.
- Tab "Cal Tech and Internal standard": Detailed information on calibration technique (internal standard calibration or external calibration) used for each compound, including the compound used as an internal standard for quantitation when the internal standard technique was used and the mix used for individual compounds, as preparing the 98 compounds required the use of 9 unique stock standard mixes.
- Tab "analysis of unspiked sample". This shows the results for the original
 3 samples of reclaimed water submitted for evaluation for use in the

spiking study. Because all samples had similar concentrations, sample MWRW-A was used for spiking.

Summary of Results

The results of the study indicate that 92 out of the 98 compounds reported appear to remain stable through the length of the hold time study. Six compounds appear to show evidence of either degradation or analytical variability.

- Two herbicides are clearly degrading over the course of the 84 day study (metazachlor and metolachlor). Both of these show significant degradation in this matrix within ~2 weeks. Metazachlor is almost completely gone, but metolachlor is still present after 84 days, but at only ~ 30% of the original concentration. Results for these two compounds should be flagged as "R", rejected data, for samples analyzed after two weeks. Note that metolachlor was also included in the LOTT results provided using Method 525, but with higher reporting limits.
- Three compounds (cimetidine, amoxicillin, and nonyl-phenol) all showed poor precision during the study (and are normally considered semiquantitative by EEA) and results are inconclusive because of that and should be flagged with a "J", as estimated results. No data are available for azithromycin because calibration results were poor, and it could not be included in the holding time study, so data for this compound should also be flagged with a "J", as estimated results.
- In addition, two compounds (nifedipine and theophyline) show concentrations
 consistently under or over the laboratory control sample (LCS) limits, but no
 evidence of inconsistent variability or degradation. This appears to be the result
 of a sample matrix effect or calibration artifact for this sample. "J" flags are
 recommended in the reports for these compounds.

Table 1. Summary Data and Conclusions

Working Stock Standard ID Analytical Date Days Since Spike						WSS 06- 30-16 7/1/2016 0	WSS 06- 30-16 7/3/2016 2	WSS 06- 30-16 7/5/2016 4	WSS 06- 30-16 7/8/2016 7	WSS 07- 15-16 7/17/2016 16	WSS-07- 25-16 7/31/2016 30	WSS 08- 15-16 8/15/2016 45	WSS 08- 29-16 8/30/2016 60	WSS 09- 07-16 9/7/2016 69	WSS-09- 21-16 9/21/2016 84	c >		conclusions regarding stability	
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, QC "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag Al Results as Estimates Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
17 alpha					Average	89.2	88.3	89.3	88.5	82.3	77.2	99.3	110.7	127.5	95.1				
ethynylestradiol - M-H					Stdev	9.3	5.2	7.1	6.5	7.5	3.9	8.4	8.5	17.9	13.9				
	60	140	72	138	Normalized	100%	99%	100%	99%	92%	87%	111%	124%	143%	107%	x			
					% Rsd	10.4%	5.8%	7.9%	7.3%	9.1%	5.1%	8.5%	7.7%	14.0%	14.7%				
17B-Estradiol - M-H					Average	97.9	98.1	95.7	94.2	81.6	78.8	105.1	106.8	118.8	96.6				
					Stdev	4.7	2.9	2.2	10.5	7.9	3.7	7.0	6.7	14.9	7.6				
	60	140	72	140	Normalized	100%	100%	98%	96%	83%	81%	107%	109%	121%	99%	x			
					% Rsd	4.8%	2.9%	2.3%	11.1%	9.6%	4.7%	6.7%	6.2%	12.5%	7.9%				
2,4-D					Average	125.1	89.0	122.8	123.7	111.8	85.2	107.6	111.1	143.6	143.8				
					Stdev	15.0	10.1	10.3	10.7	11.5	6.1	10.1	8.0	17.9	19.1				
	60	140	54	141	Normalized	100%	71%	98%	99%	89%	68%	86%	89%	115%	115%	x			
					% Rsd	12.0%	11.3%	8.4%	8.7%	10.3%	7.2%	9.3%	7.2%	12.4%	13.3%				
4-tert-OctylphenoL					Average	84.5	120.9	122.5	129.7	63.5	81.4	127.5	109.6	104.4	97.6				
					Stdev	6.6	10.3	8.5	15.5	21.8	4.5	13.2	15.4	12.0	10.8				
	60	140	59	121	Normalized	100%	143%	145%	154%	75%	96%	151%	130%	124%	116%	X			
					% Rsd	7.8%	8.5%	7.0%	11.9%	34.3%	5.6%	10.4%	14.1%	11.5%	11.0%				
Acesulfame					Average	95.6	97.0	95.3	94.8	96.6	88.2	104.8	99.5	119.0	125.5				
					Stdev	6.3	6.4	8.2	9.4	3.1	5.3	6.9	5.5	3.2	7.7				
	60	140	93	110	Normalized	100%	101%	100%	99%	101%	92%	110%	104%	124%	131%	x			
					% Rsd	6.6%	6.6%	8.6%	9.9%	3.2%	6.0%	6.6%	5.5%	2.7%	6.1%				_
Acetaminophen					Average	89.7	103.9	110.9	105.7	86.2	75.9	105.0	85.9	73.1	80.9				
					Stdev	10.6	15.4	7.1	15.0	13.1	8.6	7.8	8.9	8.5	5.7				
	60	140	84	113	Normalized	100%	116%	124%	118%	96%	85%	117%	96%	82%	90%	x			
					% Rsd	11.9%	14.8%	6.4%	14.2%	15.1%	11.3%	7.5%	10.3%	11.7%	7.0%				
Albuterol					Average	105.9	107.2	105.6	119.8	127.7	74.5	152.4	592.6	102.8	122.5				
					Stdev	10.2	6.4	19.1	18.9	16.4	22.6	22.3	206.9	15.8	14.1				
	60	140	24	156	Normalized	100%	101%	100%	113%	121%	70%	144%	560%	97%	116%	x			Working std problem on day 60
					% Rsd	9.6%	6.0%	18.1%	15.8%	12.9%	30.3%	14.7%	34.9%	15.4%	11.5%				

Working Stock Standard ID Analytical Date						WSS 06- 30-16 7/1/2016	WSS 06- 30-16 7/3/2016	WSS 06- 30-16 7/5/2016	WSS 06- 30-16 7/8/2016	WSS 07- 15-16 7/17/2016	WSS-07- 25-16 7/31/2016	WSS 08- 15-16 8/15/2016	WSS 08- 29-16 8/30/2016	WSS 09- 07-16 9/7/2016	WSS-09- 21-16 9/21/2016					
Days Since Spike						0	2	4	7	16	30	45	60	69	84			conclusions reg	arding stability	
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, QC "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag All Results as Estimates	Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
Amoxicilin					Average	32.5	28.8	38.3	35.5	310.2	101.2	408.7	678.3	682.7	604.5					
	60	140	61	147	Stdev Normalized	13.8	6.2 89%	14.8	10.7	46.1 953%	17.1 311%	55.9 1256%	62.5 2085%	63.9 2099%	61.4 1858%			x		Continuing WSS did not match day 0. Considered semi- quantitative
					% Rsd	42.4%	21.4%	38.6%	30.1%	14.9%	16.9%	13.7%	9.2%	9.4%	10.2%					
Andorostenedione					Average	68.9	61.4	65.0	72.7	85.4	49.8	78.7	91.1	87.7	101.1					
					Stdev	7.8	8.7	6.1	10.0	10.3	5.7	10.7	19.2	8.9	12.1					
	60	140	63	139	Normalized	100%	89%	94%	106%	124%	72%	114%	132%	127%	147%	х				
					% Rsd	11.3%	14.2%	9.3%	13.8%	12.0%	11.5%	13.6%	21.1%	10.1%	12.0%					
Atenolol					Average	47.3	38.0	39.4	47.4	40.9	33.7	46.7	69.2	56.9	51.7					
					Stdev	4.7	2.8	2.6	4.3	1.9	2.1	3.9	9.4	2.9	2.3					
	60	140	67	138	Normalized	100%	80%	83%	100%	86%	71%	99%	146%	120%	109%	X				
					% Rsd	10.0%	7.3%	6.7%	9.0%	4.6%	6.3%	8.4%	13.6%	5.1%	4.5%					
Atrazine					Average	72.7	72.1	71.9	66.7	85.1	65.3	73.5	63.4	85.4	76.6					
					Stdev	3.5	5.6	4.0	9.2	2.3	3.3	3.9	5.2	3.2	5.9					
	60	140	82	121	Normalized	100%	99%	99%	92%	117%	90%	101%	87%	117%	105%	x				
					% Rsd	4.9%	7.8%	5.5%	13.7%	2.7%	5.0%	5.3%	8.2%	3.8%	7.7%					
Azithromycin	60	140		not sted														x		Unable to get reliable calibration. Semi quant
Bendroflumethiazide					Average	171.0	170.4	174.8	166.0	102.5	261.8	125.3	114.9	137.3	112.2					
- M-H					Stdev	12.8	13.7	12.7	11.5	4.5	11.4	7.8	17.0	7.8	8.4					
	60	140	74	116	Normalized	100%	100%	102%	97%	60%	153%	73%	67%	80%	66%	х				Continuing WSS did not match day 0 WSS. Drop due to calibration issues
					% Rsd	7.5%	8.0%	7.3%	7.0%	4.4%	4.4%	6.2%	14.8%	5.7%	7.5%					
Bezafibrate					Average	166.9	166.4	163.2	179.4	137.7	145.4	206.4	177.0	188.9	185.4					
					Stdev	10.9	7.1	9.9	8.8	9.5	6.1	15.2	18.1	13.7	13.5					
	60	140	74	126	Normalized	100%	100%	98%	107%	82%	87%	124%	106%	113%	111%	Х				
					% Rsd	6.5%	4.3%	6.1%	4.9%	6.9%	4.2%	7.3%	10.2%	7.3%	7.3%					
Bisphenol A					Average	101.8	94.6	95.2	97.0	89.8	72.8	97.1	104.4	98.2	93.4					
					Stdev	10.7	2.3	3.2	6.8	4.4	3.4	3.4	21.5	3.6	3.4					
	60	140	90	110		100%	93%	94%	95%	88%	72%	95%	103%	96%	92%	X				
					% Rsd	10.5%	2.5%	3.3%	7.0%	4.9%	4.7%	3.5%	20.6%	3.6%	3.7%					
Bromacil					Average	132.8	129.8	135.1	145.0	111.3	131.0	163.6	118.4	133.4	142.3					

Working Stock Standard ID Analytical Date						WSS 06- 30-16 7/1/2016	WSS 06- 30-16 7/3/2016	WSS 06- 30-16 7/5/2016	WSS 06- 30-16 7/8/2016	WSS 07- 15-16 7/17/2016	WSS-07- 25-16 7/31/2016	WSS 08- 15-16 8/15/2016	WSS 08- 29-16 8/30/2016	WSS 09- 07-16 9/7/2016	WSS-09- 21-16 9/21/2016				
Days Since Spike						0	2	4	7/8/2016	16	30	45	60	69	84		EEA o	conclusions regarding stability	
																hin ody	õ.	_	
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag Al Results as Estimates Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
					Stdev	9.5	10.1	9.5	13.1	9.0	6.3	9.3	21.1	10.4	13.6				
	60	140	79	111	Normalized	100%	98%	102%	109%	84%	99%	123%	89%	100%	107%	x			
01 (11 :					% Rsd	7.2%	7.8%	7.0%	9.0%	8.1%	4.8%	5.7%	17.8%	7.8%	9.5%				
Clofibric acid					Average	131.7	134.6	124.7	131.4	124.3	101.8	126.7	103.1	118.9	124.9				
					Stdev	4.9	5.5	3.7	4.7	8.7	4.8	5.1	6.1	19.8	7.5				
	60	140	75	129	Normalized	100%	102%	95%	100%	94%	77%	96%	78%	90%	95%	x			
Butalbital					% Rsd	3.7%	4.1%	3.0%	3.6%	7.0%	4.7%	4.1%	5.9%	16.6%	6.0%				
Butaivitai					Average	106.0	113.7	114.4	134.8	120.6	112.7	122.4	133.4	141.3	137.2				
	60	4.40	7.5	446	Stdev	8.4	9.4	7.3	10.7	6.8	4.6	10.3	40.1	11.7	9.6				
	60	140	/5	116	Normalized % Rsd	100%	107%	108%	127%	114%	106%	115%	126%	133%	129%	Х			
Butylparaben-NEG					Average	7.9%	8.2%	6.4%	7.9%	5.7%	4.1%	8.5%	30.1%	8.3%	7.0%				
Bacy parasen NEG					Stdev	96.5	98.0	96.9	98.1	92.1	98.1	121.0	106.6	146.0	115.6				
	60	4.40	60	420		3.3	3.5	2.8	7.4	3.1	4.3	4.4	3.8	16.9	4.3				WSS bias on day
	60	140	68	129	Normalized	100%	102%	100%	102%	95%	102%	125%	110%	151%	120%	Х			69.
Caffeine					% Rsd	3.4%	3.6%	2.9%	7.5%	3.4%	4.3%	3.7%	3.5%	11.6%	3.7%				
Carrenie					Average Stdev	99.2	110.2	110.2	99.4	98.1	94.2	105.4	120.8	112.2	111.1				
	60	140	96	121	Normalized	23.5	30.2	19.8	26.9	33.6	29.1	37.3	52.9	19.5	37.9				
	60	140	86	121	% Rsd	100%	111% 27.4%	111% 18.0%	100%	99%	95%	106%	122%	113%	112%	Х			
Carbadox					Average	23.7% 107.8	104.2	103.7	27.0% 99.1	34.3% 106.8	30.9% 84.3	35.4% 110.6	43.8% 121.8	17.3% 120.7	34.1% 130.1				
					Stdev	107.8	104.2	103.7	15.5	7.6	14.0	12.1	14.7	22.2	20.4				
	60	140	61	140	Normalized	100%	97%	96%	92%	99%	78%	103%	113%	112%	121%	X			
	00	140	01	1-10	% Rsd	9.7%	9.6%	11.1%	15.7%	7.1%	16.6%	10.9%	12.1%	18.4%	15.6%	^			
Carbamazepine					Average	129.4	126.7	128.2	130.6	121.1	96.0	120.6	124.4	132.9	128.6				
					Stdev	4.5	3.7	5.5	10.1	7.2	4.3	4.9	6.4	5.8	6.2				
	60	140	81	118	Normalized	100%	98%	99%	101%	94%	74%	93%	96%	103%	99%	Х			
					% Rsd	3.5%	2.9%	4.3%	7.8%	5.9%	4.5%	4.1%	5.2%	4.4%	4.8%				
Carisoprodol					Average	115.1	126.0	140.6	142.5	101.9	184.6	185.4	100.1	143.8	151.1				
					Stdev	17.6	21.2	29.8	28.8	15.0	156.5	68.0	31.8	16.0	24.7				
	60	140	53	139	Normalized	100%	109%	122%	124%	89%	160%	161%	87%	125%	131%	x			
					% Rsd	15.3%	16.9%	21.2%	20.2%	14.7%	84.8%	36.7%	31.8%	11.1%	16.3%				
Chloramphenicol_M-H					Average	104.4	102.6	97.7	101.7	106.6	86.0	102.9	77.4	98.3	97.9				
					Stdev	6.9	5.7	7.8	9.0	9.0	6.9	7.6	3.9	11.2	9.5				
	60	140	66	134	Normalized	100%	98%	94%	97%	102%	82%	99%	74%	94%	94%	Х			
					% Rsd	6.6%	5.6%	8.0%	8.8%	8.5%	8.1%	7.4%	5.0%	11.4%	9.7%				

Working Stock Standard ID						WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 07- 15-16	WSS-07- 25-16	WSS 08- 15-16	WSS 08- 29-16	WSS 09- 07-16	WSS-09- 21-16					
Analytical Date						7/1/2016				7/17/2016	7/31/2016	8/15/2016	8/30/2016	9/7/2016						
Days Since Spike						0	2	4	7,0,2010	16	30	45	60	69	84		EEA (conclusions rea	garding stability	
			_			•	_	·								high and	og .	₹		
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag. Results as Estimates	Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
Chloridazon					Average	82.1	80.0	91.5	92.0	72.4	86.5	111.0	91.2	118.4	130.9					
					Stdev	9.4	7.7	10.4	8.7	24.1	7.3	11.4	9.5	8.9	16.7					
	60	140	75	120	Normalized	100%	97%	111%	112%	88%	105%	135%	111%	144%	159%	x				Positive bias in day 69 and 84 WSS
Chlorotoluron					% Rsd	11.5%	9.6%	11.3%	9.5%	33.3%	8.5%	10.3%	10.4%	7.5%	12.7%					
Chlorotolaron					Average Stdev	98.8	94.3	100.9	104.5	95.7	102.2	142.1	121.7	143.9	139.0					
	60	140	75	123	Normalized	6.2 100%	5.0 95%	4.8 102%	10.0 106%	4.5 97%	5.4 103%	7.9 144%	10.3 123%	9.4 146%	9.6 141%	х				No obvious reason for increase in
					% Rsd	6.3%	5.3%	4.8%	9.6%	4.7%	5.2%	5.5%	8.4%	6.5%	6.9%					results.
Cimetidine - PRM					Average	39.2	52.9	33.6	108.2	18.9	no data	17.2	no data	35.2	14.5					
					Stdev	3.3	3.8	3.8	7.5	5.9	no data	4.5	no data	6.9	3.3					
	60	140	71	133		100%	135%	86%	276%	48%	no data	44%	no data	90%	37%			x		Difficult to calibrate-semi- quant.
					% Rsd	8.5%	7.2%	11.4%	6.9%	31.3%	no data	26.3%	no data	19.5%	22.5%					
Cotinine - PRM					Average	113.3	115.1	127.6	96.6	100.5	84.7	97.3	116.8	115.2	123.3					
					Stdev	8.7	6.3	11.5	6.7	8.7	11.7	7.5	23.6	9.5	12.7					
	60	140	75	120	Normalized	100%	102%	113%	85%	89%	75%	86%	103%	102%	109%	Х				
Cyanazine					% Rsd	7.7%	5.5%	9.0%	6.9%	8.6%	13.8%	7.8%	20.2%	8.2%	10.3%					
Суапалпе					Average Stdev	73.9	75.6	74.1	72.6	54.6	64.0	70.8	50.3	70.7	67.7					
	60	140	00	112	Normalized	3.5 100%	2.4 102%	2.7 100%	5.1 98%	45.8 74%	3.3 87%	3.8 96%	28.5 68%	4.4 96%	3.3 92%	.,				
	60	140	00	112	% Rsd	4.7%	3.2%	3.7%	7.0%	84.0%	5.2%	5.4%	56.6%	6.3%	4.9%	Х				
DACT					Average	179.2	156.5	208.0	174.0	158.0	185.1	197.4	215.3	142.9	199.2					
					Stdev	26.4	33.1	31.4	30.0	19.9	26.7	33.8	63.9	18.3	23.4					
	60	140	61	128	Normalized	100%	87%	116%	97%	88%	103%	110%	120%	80%	111%	Х				
					% Rsd	14.8%	21.1%	15.1%	17.3%	12.6%	14.4%	17.1%	29.7%	12.8%	11.7%					
DEA					Average	92.8	88.7	97.1	106.9	73.0	64.8	101.2	67.2	96.3	131.5					
					Stdev	18.0	15.8	12.3	28.6	16.3	12.2	16.9	17.7	10.8	45.0					
	60	140	86	117	Normalized	100%	96%	105%	115%	79%	70%	109%	72%	104%	142%	х				No obvious cause for day 84 change.
					% Rsd	19.4%	17.8%	12.6%	26.8%	22.4%	18.8%	16.7%	26.3%	11.2%	34.2%					
DEET					Average	80.7	79.3	83.1	86.2	85.0	77.1	91.5	85.4	81.1	84.3					
					Stdev	4.6	4.9	3.8	5.0	3.5	4.4	6.6	8.7	4.5	3.9					
	60	140	76	117	Normalized	100%	98%	103%	107%	105%	96%	113%	106%	101%	105%	Х				
					% Rsd	5.7%	6.2%	4.5%	5.8%	4.1%	5.8%	7.2%	10.2%	5.5%	4.7%					

Working Stock Standard ID						WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 07- 15-16	WSS-07- 25-16	WSS 08- 15-16	WSS 08- 29-16	WSS 09- 07-16	WSS-09- 21-16					
Analytical Date Days Since Spike						7/1/2016 0	7/3/2016 2	7/5/2016 4	7/8/2016 7	7/17/2016 16	7/31/2016 30	8/15/2016 45	8/30/2016 60	9/7/2016 69	9/21/2016 84		EE A	conclusions ro	garding stability	
Days Since Spike						U	2	4	,	10	30	45	60	09	04	.⊑ <i>≿</i>	S EEA			
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, C "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag A Results as Estimates	Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
Dehydronifedipine					Average	89.8	80.3	79.9	81.2	80.4	72.5	77.7	75.4	93.3	90.9					
					Stdev	4.5	5.0	6.0	5.2	6.9	4.0	4.6	4.5	6.3	3.7					
	60	140	82	127	Normalized	100%	89%	89%	90%	90%	81%	87%	84%	104%	101%	x				
					% Rsd	5.0%	6.2%	7.6%	6.4%	8.6%	5.5%	5.9%	6.0%	6.8%	4.1%					
DIA					Average	84.1	91.2	86.1	86.6	81.8	77.8	99.4	88.7	98.3	96.7					
					Stdev	12.0	8.9	10.1	18.6	11.0	9.6	9.3	12.1	9.5	15.0					
	60	140	90	111	Normalized	100%	108%	102%	103%	97%	92%	118%	105%	117%	115%	X				
					% Rsd	14.3%	9.7%	11.7%	21.4%	13.4%	12.3%	9.4%	13.7%	9.7%	15.5%					
Diazepam					Average	87.2	89.6	87.4	89.2	83.8	83.1	91.3	92.8	107.0	114.2					
					Stdev	3.2	1.7	4.5	5.6	4.2	4.2	3.9	7.5	5.8	4.4					
	60	140	86	116	Normalized	100%	103%	100%	102%	96%	95%	105%	106%	123%	131%	X				
					% Rsd	3.7%	1.9%	5.2%	6.3%	5.0%	5.0%	4.3%	8.1%	5.4%	3.8%					
Diclofenac- M-H					Average	96.3	99.5	100.4	101.4	94.4	77.2	105.7	102.8	127.4	104.2					
					Stdev	3.1	5.3	6.0	7.0	6.5	4.8	9.5	3.3	15.2	7.2					
	60	140	68	141	Normalized	100%	103%	104%	105%	98%	80%	110%	107%	132%	108%	x				
Dil di Addi					% Rsd	3.2%	5.3%	6.0%	6.9%	6.9%	6.2%	9.0%	3.3%	11.9%	6.9%					
Dilantin - M-H					Average	96.0	90.8	89.5	96.5	109.0	82.1	105.2	93.0	131.9	104.3					
					Stdev	7.5	5.2	6.6	11.0	11.0	4.4	12.3	7.0	15.9	7.8					
	60	140	55	119	Normalized	100%	94%	93%	101%	114%	85%	109%	97%	137%	109%	X				
					% Rsd	7.8%	5.7%	7.4%	11.4%	10.1%	5.3%	11.7%	7.5%	12.1%	7.5%					
Diltiazem					Average	179.7	200.8	205.9	229.4	128.8	180.4	163.9	121.6	137.1	126.0					
					Stdev	9.7	12.8	9.0	10.1	9.7	10.9	12.6	12.0	13.1	6.9					Constitution MCC did
	60	140	74	126	Normalized	100%	112%	115%	128%	72%	100%	91%	68%	76%	70%	x				Continuing WSS did not match day 0; decrease is a calibration issue.
Diuran					% Rsd	5.4%	6.4%	4.4%	4.4%	7.5%	6.0%	7.7%	9.9%	9.6%	5.5%					
Diuron					Average	94.8	96.6	88.8	89.2	88.6	86.2	100.3	103.0	120.3	98.7					
					Stdev	2.2	3.3	3.6	4.8	4.1	2.2	3.6	4.3	12.6	4.5					
	60	140	75	131	Normalized	100%	102%	94%	94%	93%	91%	106%	109%	127%	104%	х				
					% Rsd	2.3%	3.4%	4.1%	5.4%	4.7%	2.6%	3.6%	4.2%	10.5%	4.6%					
Erythromycin					Average	110.2	171.3	147.0	161.8	78.5	203.2	144.8	96.3	103.1	82.0					
					Stdev	7.8	11.1	17.5	17.4	5.8	9.0	8.5	7.3	15.3	6.8					Continuing MCC 414
	60	140	64	137	Normalized	100%	155%	133%	147%	71%	184%	131%	87%	94%	74%	х				Continuing WSS did not match day 0; drop is a Calibration issue
					% Rsd	7.1%	6.5%	11.9%	10.8%	7.5%	4.4%	5.9%	7.5%	14.9%	8.3%					

Working Stock Standard ID						WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 07- 15-16	WSS-07- 25-16	WSS 08- 15-16	WSS 08- 29-16	WSS 09- 07-16	WSS-09- 21-16					
Analytical Date						7/1/2016			7/8/2016	7/17/2016	7/31/2016	8/15/2016	8/30/2016	9/7/2016			FF.A		and a section	
Days Since Spike						0	2	4	7	16	30	45	60	69	84	<u> </u>	S EEA	conclusions reg	garding stability	
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, C "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag A Results as Estimates	Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
Estrone					Average	107.8	102.4	106.3	127.7	95.0	82.9	96.6	104.0	112.3	90.1					
					Stdev	8.3	7.4	9.2	9.3	10.8	5.8	12.7	18.3	13.0	7.4					
	60	140	75	124	Normalized	100%	95%	99%	118%	88%	77%	90%	97%	104%	84%	x				
					% Rsd	7.7%	7.2%	8.7%	7.3%	11.4%	7.0%	13.2%	17.6%	11.6%	8.2%					
Ethylparaben					Average	105.5	107.5	106.3	108.3	100.1	110.4	112.5	110.2	149.1	123.4					
					Stdev	2.1	2.5	1.8	16.6	6.4	10.1	4.0	5.3	15.5	4.8					
	60	140	70	132	Normalized	100%	102%	101%	103%	95%	105%	107%	104%	141%	117%	х				Day 69 WSS biased high.
					% Rsd	2.0%	2.3%	1.7%	15.3%	6.4%	9.2%	3.6%	4.9%	10.4%	3.9%					
Flumequine					Average	107.9	104.8	103.7	108.6	97.2	96.5	107.1	119.0	131.6	138.8					
					Stdev	6.4	6.5	7.7	12.3	9.1	5.5	6.4	14.4	9.2	11.2					
	60	140	80	121	Normalized	100%	97%	96%	101%	90%	89%	99%	110%	122%	129%	x				
					% Rsd	5.9%	6.2%	7.5%	11.3%	9.4%	5.7%	6.0%	12.1%	7.0%	8.0%					
Fluoxetine					Average	150.2	178.7	207.9	217.5	67.0	195.4	76.0	87.7	85.3	86.8					
					Stdev	10.8	40.1	36.2	34.4	3.8	24.7	11.7	17.5	13.4	14.2					
	60	140	59	146	Normalized	100%	119%	138%	145%	45%	130%	51%	58%	57%	58%	x				Continuing WSS did not match day 0; drop is a calibration issue.
					% Rsd	7.2%	22.4%	17.4%	15.8%	5.6%	12.6%	15.4%	19.9%	15.7%	16.3%					
Gemfibrozil					Average	114.0	114.9	118.1	113.9	114.7	64.6	84.7	85.8	137.7	188.6					
					Stdev	6.5	3.9	3.6	8.7	28.0	3.6	4.0	15.7	4.9	22.0					High high an day CO
	60	140	68	137	Normalized	100%	101%	104%	100%	101%	57%	74%	75%	121%	165%	Х				High bias on day 69 and 84 WSS.
					% Rsd	5.7%	3.4%	3.0%	7.7%	24.4%	5.6%	4.7%	18.3%	3.5%	11.6%					
Ibuprofen					Average	99.8	101.6	95.6	98.3	84.4	86.2	102.4	111.6	142.4	112.1					
					Stdev	3.2	2.2	3.3	6.8	10.3	3.4	4.1	5.5	15.5	3.5					
	60	140	62	140	Normalized	100%	102%	96%	98%	85%	86%	103%	112%	143%	112%	X				
					% Rsd	3.2%	2.2%	3.4%	6.9%	12.3%	4.0%	4.1%	5.0%	10.9%	3.1%					
Iohexol - M+H					Average	87.8	84.1	83.7	84.5	66.7	83.0	76.0	102.8	130.1	112.7					
					Stdev	15.8	10.8	12.7	16.1	6.4	9.4	7.3	9.8	27.7	11.6					
	60	140	72	158	Normalized	100%	96%	95%	96%	76%	95%	87%	117%	148%	128%	Х				
Januarida DDM					% Rsd	18.0%	12.8%	15.2%	19.1%	9.6%	11.3%	9.6%	9.6%	21.3%	10.3%					
Iopromide - PRM					Average	97.1	78.8	73.5	95.2	79.4	74.4	68.7	79.5	95.0	98.3					
	a =			4.5	Stdev	7.3	11.5	9.1	17.7	12.2	7.0	8.5	26.3	9.5	8.9					
	60	140	59	164	Normalized	100%	81%	76%	98%	82%	77%	71%	82%	98%	101%	X				
Isobuylparaben					% Rsd	7.5%	14.6%	12.4%	18.6%	15.4%	9.4%	12.4%	33.1%	10.0%	9.1%					
1300uyipai aucii					Average	96.5	98.0	97.0	98.0	92.0	98.2	121.0	106.7	146.0	115.4					

Working Stock Standard ID Analytical Date Days Since Spike						WSS 06- 30-16 7/1/2016 0	WSS 06- 30-16 7/3/2016 2	WSS 06- 30-16 7/5/2016 4	WSS 06- 30-16 7/8/2016 7	WSS 07- 15-16 7/17/2016 16	WSS-07- 25-16 7/31/2016 30	WSS 08- 15-16 8/15/2016 45	WSS 08- 29-16 8/30/2016 60	WSS 09- 07-16 9/7/2016 69	WSS-09- 21-16 9/21/2016 84		EEA	conclusions re	garding stability	
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, QC "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag All Results as Estimates	Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
					Stdev	3.3	3.5	2.8	7.4	3.1	4.3	4.5	3.8	16.9	4.2					Day CO MCC his and
	60	140	68	129	Normalized	100%	102%	100%	102%	95%	102%	125%	111%	151%	120%	X				Day 69 WSS biased high.
					% Rsd	3.4%	3.6%	2.9%	7.5%	3.4%	4.3%	3.7%	3.5%	11.6%	3.6%					_
Isoproturon					Average	109.4	100.4	97.2	97.2	113.9	98.6	106.7	94.3	117.9	122.1					
					Stdev	6.0	3.6	6.1	7.1	11.2	6.4	5.1	5.6	5.9	7.7					
	60	140	83	129	Normalized	100%	92%	89%	89%	104%	90%	98%	86%	108%	112%	X				
Ketoprofen					% Rsd	5.5%	3.6%	6.3%	7.3%	9.8%	6.5%	4.8%	6.0%	5.0%	6.3%					
Retoprofeii					Average	75.8	69.7	62.2	74.1	82.4	54.0	65.9	76.4	79.0	80.4					
					Stdev	4.1	4.8	5.2	6.9	5.8	3.9	6.1	6.5	4.3	6.4					
	60	140	67	125	Normalized	100%	92%	82%	98%	109%	71%	87%	101%	104%	106%	X				
Ketorolac					% Rsd	5.4%	6.8%	8.4%	9.3%	7.0%	7.2%	9.3%	8.6%	5.5%	8.0%					
Retorolac					Average	70.0	65.4	63.3	70.1	76.4	48.2	59.4	61.1	70.2	79.8					
					Stdev	5.5	4.6	4.1	5.2	9.3	4.1	4.0	6.7	4.3	5.7					
	60	140	70	129	Normalized	100%	94%	90%	100%	109%	69%	85%	87%	100%	114%	X				
Lidocaine					% Rsd	7.9%	7.0%	6.5%	7.3%	12.2%	8.4%	6.8%	10.9%	6.1%	7.1%					
Lidocairie					Average	100.3	102.2	95.8	116.9	96.3	77.3	106.1	91.0	74.4	100.2					
					Stdev	7.7	5.6	6.6	10.0	10.0	6.4	10.0	13.0	5.8	8.1					
	60	140	73	143	Normalized	100%	102%	96%	116%	96%	77%	106%	91%	74%	100%	Х				
Lincomycin					% Rsd	7.7%	5.5%	6.8%	8.6%	10.4%	8.3%	9.4%	14.3%	7.8%	8.1%					
Lincomycin					Average Stdev	101.2	119.2	128.4	144.3	102.0	128.5	101.9	140.5	122.1	127.5					
	60	4.40		452	Normalized	18.5	25.8	20.9	26.4	15.0	18.6	11.8	22.9	14.0	11.5					
	60	140	55	153	% Rsd	100%	118%	127%	143%	101%	127%	101%	139%	121%	126%	Х				
Linuron					Average	18.3% 90.9	21.7% 88.3	16.2% 91.2	18.3% 85.7	14.7%	14.5% 75.3	91.3	16.3% 105.0	11.4% 139.2	9.0%					
2					Stdev	2.6	2.9	2.9	85. <i>7</i> 7.1	82.5 3.6	75.3 3.7	4.2	4.1	16.1	4.6					
	60	140	72	124			97%		94%											day 69 WSS biased
	60	140	12	134		100%		100%		91%	83%	100%	115%	153%	118%	Х				high
					% Rsd	2.9%	3.3%	3.1%	8.2%	4.4%	4.9%	4.6%	3.9%	11.6%	4.3%					
Lopressor- Metoprolol					Average	113.7	115.1	108.3	109.5	102.7	95.3	127.9	122.0	123.4	119.4					
ctopioioi					Stdev	6.5	4.8	6.1	8.6	5.7	5.5	5.8	9.9	15.3	8.0					
	60	140	78	141	Normalized	100%	101%	95%	96%	90%	84%	112%	107%	109%	105%	Х				
Meclofenamic Acid					% Rsd	5.7%	4.2%	5.6%	7.8%	5.6%	5.8%	4.5%	8.1%	12.4%	6.7%					
Mediorenamic Acid					Average	96.3	96.9	99.7	102.3	94.5	77.1	105.7	102.8	127.4	104.3					
					Stdev	3.1	5.4	6.1	7.7	6.5	4.7	9.5	3.3	15.2	7.2					
	60	140	67	142	Normalized	100%	101%	103%	106%	98%	80%	110%	107%	132%	108%	Х				

Working Stock Standard ID Analytical Date						WSS 06- 30-16 7/1/2016	WSS 06- 30-16 7/3/2016	WSS 06- 30-16 7/5/2016	WSS 06- 30-16 7/8/2016	WSS 07- 15-16 7/17/2016	WSS-07- 25-16 7/31/2016	WSS 08- 15-16 8/15/2016	WSS 08- 29-16 8/30/2016	WSS 09- 07-16 9/7/2016	WSS-09- 21-16 9/21/2016					
Days Since Spike						0	2	4	7,8,2010	16	30	45	60	69	84		EEA o	conclusions regarding st	ability	
	LCS Lower	LCS Upper	er Limit (%)	er Limit												t Results Within ruring Full Study / Quantitative QC Flag	Degradation er 2 Weeks, QC tesults After Starts	Variable, tive, I" QC Flag All nates Outside LCS	(Possible Calibration HT study, J flag)	
	EEA Method L Limit (%)	EEA Method L Limit (%)	Study LCS Low	Study LCS Upp												Stable, Most R LCS Limits Duri Period, Fully Q Results, No QC	Stable With De Occuring After "R" QC Flag Re Degradation Si	Results Highly Semi-Quantita Recommend ", Results as Estii Results Often Limits, But No	Variability (Po	Comment
					% Rsd	3.2%	5.6%	6.1%	7.5%	6.9%	6.1%	9.0%	3.3%	11.9%	6.9%					
Meprobamate					Average	98.9	95.5	109.3	89.3	96.1	202.6	74.8	80.7	78.7	55.8					
					Stdev	15.9	19.4	24.7	25.4	21.6	38.0	15.7	15.7	10.0	15.1					
	60	140	76	144	Normalized	100%	97%	110%	90%	97%	205%	76%	82%	80%	56%	x				
					% Rsd	16.1%	20.3%	22.6%	28.4%	22.5%	18.8%	21.1%	19.5%	12.7%	27.1%					
Metazachlor					Average	70.7	64.2	52.2	52.1	35.5	15.6	9.7	4.7	4.5	-2.1					
					Stdev	4.0	2.3	2.7	4.8	3.2	1.1	0.7	0.9	0.7	0.3				ما م	
	60	140	76	131	Normalized	100%	91%	74%	74%	50%	22%	14%	7%	6%	-3%		x		signi	egrades ficantly in after 15 days
					% Rsd	5.6%	3.6%	5.1%	9.1%	9.0%	7.3%	7.7%	18.5%	16.6%	-11.9%					
Metformin					Average	156.8	135.4	163.9	160.8	142.8	138.7	138.1	111.7	129.3	165.0					
					Stdev	26.6	21.4	38.2	38.0	15.4	23.6	18.2	30.5	18.7	19.1					
	60	140	58	143	Normalized	100%	86%	105%	103%	91%	88%	88%	71%	82%	105%	x				
					% Rsd	16.9%	15.8%	23.3%	23.6%	10.8%	17.0%	13.2%	27.3%	14.5%	11.6%					
Methylparaben - M-H					Average	124.3	124.2	115.7	119.4	117.2	113.6	141.3	122.4	159.2	118.5					
					Stdev	5.0	10.0	9.6	14.1	7.7	6.5	8.9	5.1	17.0	9.6					
	60	140	65	135	Normalized	100%	100%	93%	96%	94%	91%	114%	98%	128%	95%	х				
					% Rsd	4.0%	8.1%	8.3%	11.8%	6.6%	5.7%	6.3%	4.2%	10.7%	8.1%					
Metolachlor					Average	90.5	85.6	81.2	77.0	58.2	42.5	38.5	26.4	26.0	17.8					
	60	140	90	111	Stdev Normalized	4.7 100%	3.1 95%	2.8 90%	5.1 85%	2.6 64%	2.0 47%	1.9 42%	1.8 29%	1.3 29%	0.9 20%		X			des after 15 s, but still
	00	140	0,5	114	% Rsd	5.2%	3.7%	3.5%	6.6%	4.5%	4.6%	5.0%	6.8%	4.8%	5.1%		^			resent
Naproxen					Average	124.7	116.6	115.5	116.8	103.7	95.8	122.5	131.5	138.5	123.9					
					Stdev	5.2	6.3	8.4	12.1	9.6	6.8	13.3	8.6	19.9	13.3					
	60	140	75	127		100%	94%	93%	94%	83%	77%	98%	105%	111%	99%	х				
					% Rsd	4.2%	5.4%	7.3%	10.3%	9.2%	7.1%	10.9%	6.5%	14.4%	10.8%					
Nifedipine					Average	106.1	123.9	125.7	165.0	157.8	103.9	180.5	142.5	260.0	137.6					_
					Stdev	4.2	5.2	6.7	14.1	10.6	5.1	11.5	8.7	25.0	7.6					
	60	140	8	122	Normalized	100%	117%	118%	156%	149%	98%	170%	134%	245%	130%	х			x Variab	ility in WSS.
					% Rsd	3.9%	4.2%	5.3%	8.5%	6.7%	5.0%	6.4%	6.1%	9.6%	5.5%					
Nonyl-phenol					Average	117.1	216.6	235.2	284.6	84.0	172.7	210.5	144.8	161.0	138.5					
					Stdev	5.9	20.6	23.5	28.6	10.3	16.9	21.6	25.4	10.3	21.0					
	60	140	48	143	Normalized	100%	185%	201%	243%	72%	148%	180%	124%	138%	118%	X		x		ility in WSS - uantitative.

Part	Working Stock Standard ID						WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 07- 15-16	WSS-07- 25-16	WSS 08- 15-16	WSS 08- 29-16	WSS 09- 07-16	WSS-09- 21-16				
Properties of the content of the c								• •	7/5/2016											
Professional Pro	Days Since Spike						0	2	4	7	16	30	45	60	69	84	<u> </u>	U	_	
Marian		EEA Method LCS Lower Limit (%)	Method LCS t (%)	Lower Limit	LCS Upper												Most Results its During Ful Fully Quantit , No QC Flag	ole With Degradation uring After 2 Weeks, (QC Flag Results After radation Starts	esults Highly Variabl emi-Quantitative, ecommend "J" QC Fl esults as Estimates Results Often Outside Limits, But No Degradation or Extrer Variability (Possible Matrix or Calibration Artifact in HT study, J	Comment
Substitution Properties P						% Rsd	5.1%	9.5%	10.0%	10.1%	12.3%	9.8%	10.3%	17.6%	6.4%	15.2%				
Principle Prin	Norethisterone					_	90.9	93.6	84.6	105.9	102.6	76.4	98.9	125.6	94.7	104.0				
Controlled 1							8.5	5.0	6.5	20.1	15.9	6.4	7.0	52.3	8.4	8.1				
Output		60	140	72	146		100%	103%	93%	117%	113%	84%	109%	138%	104%	114%	x			
State Stat							9.4%	5.3%	7.7%	18.9%	15.5%	8.4%	7.1%	41.6%	8.8%	7.8%				
Paraxamthile Par	Oxolinic Acid					_	88.5	113.2	105.4	104.9	117.4	97.0	120.6	130.9	125.7	136.5				
Paramithine							7.1	5.1	11.1	10.3	13.0	6.3	6.6	9.5	8.7	7.2				
Printary Printary		60	140	71	145		100%	128%		119%	133%	110%	136%				x			
Side							8.0%	4.5%	10.5%	9.8%	11.0%	6.5%	5.5%	7.3%	6.9%	5.3%				
Pentoxifylline	Paraxanthine					_	56.1	46.8	44.0	42.9	56.9	57.4	76.8	77.5	80.7	76.7				
Pentoxifylline							6.5	4.3	4.6	7.5	4.9	9.1	8.0	21.7	8.5	12.2				
Pentoxifylline		60	140	70	120		100%	83%	78%	76%	101%	102%	137%	138%	144%	137%	x			
Steel Stee						% Rsd	11.7%	9.1%	10.5%	17.6%	8.5%	15.9%	10.4%	28.0%	10.6%	15.9%				
Phenazone	Pentoxifylline					_	61.2	80.5	71.2	70.2	74.7	56.1	92.4	63.3	76.3	74.2				
Phenazone Free Prenazone Free Prenazo						Stdev	6.2	9.6	9.4	10.3	11.2	7.5	5.1	14.0	8.7	9.6				
Phenazone		60	140	72	144	Normalized	100%	132%	116%	115%	122%	92%	151%	103%	125%	121%	x			
Stdey 1.0 1.						% Rsd	10.2%	12.0%	13.3%	14.7%	15.0%	13.4%	5.5%	22.1%	11.4%	13.0%				_
Primidone Family Family	Phenazone					Average	110.8	115.4	113.6	109.2	115.4	86.9	118.0	92.1	87.9	102.7				
Primidone						Stdev	7.3	8.2	9.2	11.0	10.9	6.8	8.3	14.8	5.7	11.2				
Primidone		60	140	67	147	Normalized	100%	104%	102%	98%	104%	78%	106%	83%	79%	93%	x			
Stdev 10.4 7.4 4.0 8.3 9.2 6.2 8.0 11.3 3.9 7.7						% Rsd	6.6%	7.1%	8.1%	10.0%	9.4%	7.8%	7.1%	16.0%	6.5%	10.9%				
Fropspilaraben Frop	Primidone					Average	42.9	54.3	46.9	59.0	42.8	29.7	43.9	66.5	28.5	53.5				
Progesterone KRSd 24.3% 13.6% 8.6% 14.1% 21.6% 20.8% 18.1% 17.1% 13.8% 14.4% Progesterone KRSd 24.3% 13.6% 8.6% 14.1% 21.6% 20.8% 18.1% 17.1% 13.8% 14.4% Progesterone KRSd 95.7 92.0 87.5 112.3 86.1 74.1 113.8 103.5 100.7 93.6 60 140 71 143 Normalized Normalized 90.6 91.6 117.6 90.6 77.6 119% 10.6% 12.2% 7.8% 10.8% X Propazine KRSd 95.9 91.6 86.8 87.9 96.2 79.1 91.4 89.3 118.1 99.7 Propazine 14.2 75.2 14.2 70.0 6.9 12.3 6.3 7.1 Propazine 14.2 75.2 14.2 70.0 6.9 93.8 12.3 12.3 6.3 7.1 <						Stdev	10.4	7.4	4.0	8.3	9.2	6.2	8.0	11.3	3.9	7.7				
Progesterone Average 95.7 92.0 87.5 112.3 86.1 74.1 113.8 103.5 100.7 93.6 60 140 71 143 Normalized 100% 96% 91% 117% 90% 77% 119% 108% 105% 98% x Propazine X X Rsd 9.6% 8.9% 10.2% 10.1% 7.7% 9.2% 10.6% 12.2% 7.8% 10.8% Propazine X X Average 95.9 91.6 86.8 87.9 96.2 79.1 91.4 89.3 118.1 99.7 Stdev 5.0 4.2 6.8 12.5 14.2 7.0 6.9 12.3 6.3 7.1 60 140 75 137 Normalized 100% 96% 90% 92% 100% 82% 95% 93% 123% 104% x Propylparaben X 40eage 97.4		60	140	64	146	Normalized	100%	126%	109%	138%	100%	69%	102%	155%	66%	125%	x			
Stdev 9.0 1.						% Rsd	24.3%	13.6%	8.6%	14.1%	21.6%	20.8%	18.1%	17.1%	13.8%	14.4%				
Fropaline 60 140 71 143 Normalized % Rsd 96% 91% 117% 90% 77% 119% 108% 105% 98% x Propazine Fropazine Fr	Progesterone					Average	95.7	92.0	87.5	112.3	86.1	74.1	113.8	103.5	100.7	93.6				
Propazine 60 140 75 137 10.2% 10.1% 7.7% 9.2% 10.6% 12.2% 7.8% 10.8% Propazine Fropazine Fropazine <td></td> <td></td> <td></td> <td></td> <td></td> <td>Stdev</td> <td>9.2</td> <td>8.2</td> <td>8.9</td> <td>11.3</td> <td>6.6</td> <td>6.9</td> <td>12.1</td> <td>12.6</td> <td>7.9</td> <td>10.1</td> <td></td> <td></td> <td></td> <td></td>						Stdev	9.2	8.2	8.9	11.3	6.6	6.9	12.1	12.6	7.9	10.1				
Propazine Jack Stdev Stdev 5.0 4.2 6.8 14.2 7.0 6.9 12.3 6.3 7.1 60 140 75 137 Normalized 100% 96% 90% 92% 100% 82% 95% 93% 123% 104% x Propylparaben 100% 96.6 94.7 101.4 97.9 103.6 120.1 112.6 152.0 130.0		60	140	71	143	Normalized	100%	96%	91%	117%	90%	77%	119%	108%	105%	98%	x			
Stdev Stde						% Rsd	9.6%	8.9%	10.2%	10.1%	7.7%	9.2%	10.6%	12.2%	7.8%	10.8%				
60 140 75 137 Normalized 100% 96% 90% 92% 100% 82% 95% 93% 123% 104% x Propylparaben 97.4 96.6 94.7 101.4 97.9 103.6 120.1 112.6 152.0 130.0	Propazine					Average	95.9	91.6	86.8	87.9	96.2	79.1	91.4	89.3	118.1	99.7				
60 140 75 137 Normalized 100% 96% 90% 92% 100% 82% 95% 93% 123% 104% x Propylparaben 97.4 96.6 94.7 101.4 97.9 103.6 120.1 112.6 152.0 130.0						Stdev	5.0	4.2	6.8	12.5	14.2	7.0	6.9	12.3	6.3	7.1				
Propylparaben Average 97.4 96.6 94.7 101.4 97.9 103.6 120.1 112.6 152.0 130.0		60	140	75	137	Normalized	100%	96%	90%	92%	100%	82%	95%	93%		104%	Х			
Propylparaben Average 97.4 96.6 94.7 101.4 97.9 103.6 120.1 112.6 152.0 130.0						% Rsd														
	Propylparaben					Average				101.4	97.9		120.1	112.6						
						Stdev														

Working Stock Standard ID Analytical Date						WSS 06- 30-16 7/1/2016	WSS 06- 30-16 7/3/2016	WSS 06- 30-16 7/5/2016	WSS 06- 30-16 7/8/2016	WSS 07- 15-16 7/17/2016	WSS-07- 25-16 7/31/2016	WSS 08- 15-16 8/15/2016	WSS 08- 29-16 8/30/2016	WSS 09- 07-16 9/7/2016	WSS-09- 21-16 9/21/2016					
Days Since Spike						0	2	4	7	16	30	45	60	69	84		EEA (conclusions re	garding stability	
	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)												Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, QC "R" QC Flag Results After Degradation Starts	Results Highly Variable, Semi-Quantitative, Recommend "J" QC Flag All Results as Estimates	Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
	60	140	68	136	Normalized	100%	99%	97%	104%	101%	106%	123%	116%	156%	133%	X				High bias in WSS from day 69.
					% Rsd	2.5%	3.6%	3.8%	6.8%	6.3%	2.9%	3.2%	7.1%	10.8%	5.6%					
Quinoline					Average	95.3	83.2	79.9	86.6	79.4	70.7	87.7	95.0	108.9	84.2					
					Stdev	8.4	5.3	6.3	7.7	3.8	7.1	4.1	7.4	6.1	4.5					
	60	140	85	115	Normalized % Rsd	100% 8.8%	87%	84%	91% 8.8%	83%	74% 10.0%	92% 4.6%	100% 7.8%	114%	88%	Х				
Simazine					Average	108.0	6.4% 115.8	7.9% 106.6	101.8	4.8% 98.5	96.8	4.6%	99.1	5.6% 107.5	5.4% 115.1					
					Stdev	4.6	6.4	3.4	9.1	6.7	4.8	4.9	4.4	7.0	5.2					
	60	140	87	109	Normalized	100%	107%	99%	94%	91%	90%	103%	92%	100%	107%	Х				
					% Rsd	4.3%	5.5%	3.2%	8.9%	6.8%	4.9%	4.4%	4.4%	6.5%	4.5%					
Sucralose - M-H					Average	209.8	162.6	143.6	146.2	164.7	150.9	257.6	167.2	180.1	232.2					
					Stdev	26.8	31.3	19.3	25.0	25.1	30.3	12.9	50.1	45.5	43.4					
	60	140	90	114	Normalized	100%	78%	68%	70%	79%	72%	123%	80%	86%	111%	Х				
Sulfachloropyridazine					% Rsd	12.8%	19.3%	13.5%	17.1%	15.2%	20.1%	5.0%	29.9%	25.2%	18.7%					
Junacinoropyriaazine					Average Stdev	25.2 8.9	27.9 11.2	30.3 9.1	19.5 4.1	45.3 10.1	23.6 8.9	33.8 7.5	21.9 6.8	49.3 7.3	28.1 5.4					
	60	140	65	133	Normalized	100%	11.2	120%	78%	180%	94%	7.5 134%	87%	196%	112%	x				
	00	140	03	133	% Rsd	35.4%	40.1%	30.1%	20.7%	22.4%	37.6%	22.2%	31.1%	14.8%	19.1%	^				
Sulfadiazine					Average	96.2	109.6	100.2	76.8	59.7	86.0	126.9	108.3	132.2	86.0					
					Stdev	20.3	55.0	36.8	26.2	27.5	36.0	48.6	14.4	21.8	23.6					
	60	140	85	121	Normalized	100%	114%	104%	80%	62%	89%	132%	113%	137%	89%	Х				
- 16 11 11					% Rsd	21.2%	50.2%	36.8%	34.2%	46.0%	41.9%	38.3%	13.3%	16.5%	27.4%					
Sulfadimethoxine					Average	108.8	126.0	126.3	112.1	100.4	86.3	90.9	78.3	117.9	107.6					
	CO	4.40	C F	427	Stdev	11.0	12.5	14.3	18.9	11.1	2.9	7.9	5.1	12.1	12.0					
	60	140	65	137	Normalized % Rsd	100% 10.1%	116% 9.9%	116% 11.3%	103% 16.8%	92% 11.0%	79% 3.4%	84% 8.7%	72% 6.5%	108% 10.3%	99% 11.2%	Х				
Sulfamerazine					Average	115.9	113.1	97.3	118.3	120.5	116.8	104.3	90.4	10.5%	104.3					
					Stdev	32.5	36.1	27.0	42.3	40.6	47.7	60.5	31.5	40.0	53.2					
	60	140	71	135	Normalized	100%	98%	84%	102%	104%	101%	90%	78%	90%	90%	X				
					% Rsd	28.0%	31.9%	27.8%	35.8%	33.7%	40.8%	58.0%	34.9%	38.4%	51.0%					
Sulfamethazine					Average	124.3	124.6	128.0	96.6	138.6	131.6	118.0	90.9	89.3	133.6					
					Stdev	33.5	38.1	59.2	31.9	58.2	35.9	27.9	37.3	62.0	38.7					
	60	140	71	137	Normalized	100%	100%	103%	78%	112%	106%	95%	73%	72%	107%	x				
Culfare H					% Rsd	26.9%	30.6%	46.2%	33.0%	42.0%	27.3%	23.6%	41.1%	69.5%	28.9%					
Sulfamethizole					Average	230.9	207.3	214.2	167.5	287.5	293.8	263.8	220.4	186.4	183.2					

Part	Working Stock Standard ID						WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 06- 30-16	WSS 07- 15-16	WSS-07- 25-16	WSS 08- 15-16	WSS 08- 29-16	WSS 09- 07-16	WSS-09- 21-16					
Part																					
Part																		EEA (onclusions rea	garding stability	
	Days omice opine			_			•	_	•	·	0					0.	ric A	کر ا	₹		
Part		EEA Method LCS Lower Limit (%)	od LCS	LCS Lower Limit	LCS Upper												Most Results its During Ful Fully Quantit , No QC Flag	With Degrading After 2 We Flag Results Hation Starts	Highly Varia Jantitative, nend "J" QC as Estimates	Its Often Outside I s., But No adation or Extrem ability (Possible ix or Calibration act in HT study,J fl.	Comment
Minimar													46.3		76.9						
Mariane Housewise Fig. Mariane Housewise Mariane Housewise Mariane Housewise Mariane Housewise Mariane House M		60	140	76	115		100%	90%	93%	73%	125%	127%	114%	95%	81%		x				
Fig.	C If II																				
Month Mont	Sulfamethoxazole					_						65.1									
Sulforhiacole																					
Marthanole		60	140	93	108												x				
Substitution Subs	Culfathianala																				
Mathematical Registration	Sulfathiazole					_															
Sufference Fig. Sufference Sufferenc																					
Sufferentiary Sufference		60	140	62	133												X				
Steva 1	Sulfamaturan mathyl																				
Part	Sulforneturon methyr					_															
Maria Bana Bana Bana Bana Bana Bana Bana Ba																					High bias in some
TCEP Average Stefa Stef		60	140	65	122												Х				
Stoke Stok	TCED																				
Figure F	ICLF																				
TCPP			4.40		404																
TCPP Average 88.3 96.1 95.2 106.3 135.2 100.2 143.6 185.9 201.9 101.8 Stdev 7.1 7.6 7.4 13.9 22.3 13.3 13.9 212.8 36.7 7.8 Normalized 100% 109% 109% 101% 165% 13.3% 9.7% 1145.6 182.% 7.7% TDCPP-PRM Average 77.9 55.4 64.9 57.2 53.4 43.6 44.0 70.4 70.1 47.2 Stdev 10.9 6.5 6.6 17.8 6.7 5.4 4.5 10.1 7.7 6.8 Normalized 100% 71% 83% 73% 69% 56% 56% 90% 90% 61% x Restosterone Average 103.0 105.5 103.2 106.5 81.1 82.1 88.2 111.2 99.5 81.4 Stdev 7.9 8.7 7.7 6.6 5.8 5.4 5.5 17.8 6.2 3.2 Testosterone Average 103.0 105.5 103.2 106.5 81.1 82.1 88.2 111.2 99.5 81.4 Stdev 7.9 8.7 7.7 6.6 5.8 5.4 5.5 17.8 6.2 3.2 Theobromine Average 60.1 70.9 70.4 80.2 79.2 81.5 79.8 125.9 111.1 120.5 Stdev 10.5 13.8 18.4 18.3 12.1 12.7 34.0 159.3 8.9 12.9 Stdev 10.5 13.8 18.4 18.3 12.1 12.7 34.0 159.3 8.9 12.9 Stdev 10.5 13.8 18.4 18.3 12.1 12.7 34.0 159.3 8.9 12.9		60	140	71	124												Х				
Stdev Final Processes Stdev Final Processes Final Proces	TCDD																				
Normalized 10%	TCIT																				
March Marc		40	1.00	4.0	202																
TDCPP - PRM		40	160	18	203												Х				
Steel 10.9 16.0	TDCPP - PRM																				
August	15611 11111																				
Festosterone		40	160	26	171												v				
Testosterone		40	100	20	1/1												*				
Stdev Total Tota	Testosterone																				
Figure F																					
Memory of the observation of		60	140	71	127												Y				
Theobromine Average 60.1 70.9 70.4 80.2 79.2 81.5 79.8 125.9 111.1 120.5 Stdev 10.5 13.8 18.4 18.3 12.1 12.7 34.0 159.3 8.9 12.9 60 140 55 139 Normalized 100% 118% 117% 133% 132% 135% 133% 209% 185% 200% x		50	140	, 1	141												^				
Stdev 10.5 13.8 18.4 18.3 12.1 12.7 34.0 159.3 8.9 12.9 60 140 55 139 Normalized 100% 118% 117% 133% 132% 135% 133% 209% 185% 200% x	Theobromine																				
60 140 55 139 Normalized 100% 118% 117% 133% 132% 135% 133% 209% 185% 200% x																					
		60	140	55	139												x				
		55	1 10	55	_55	% Rsd	17.5%	19.5%	26.1%	22.7%	15.3%	15.6%	42.6%	126.5%	8.0%	10.7%	^				

Analytical Date Days Since Spike	EEA Method LCS Lower Limit (%)	EEA Method LCS Upper Limit (%)	Study LCS Lower Limit (%)	Study LCS Upper Limit (%)		30-16 7/1/2016 0	30-16 7/3/2016 2	30-16 7/5/2016 4	30-16 7/8/2016 7	15-16 7/17/2016 16	25-16 7/31/2016 30	15-16 8/15/2016 45	29-16 8/30/2016 60	07-16 9/7/2016 69	21-16 9/21/2016 84	Stable, Most Results Within LCS Limits During Full Study Period, Fully Quantitative Results, No QC Flag	Stable With Degradation Occuring After 2 Weeks, QC 'R" QC Flag Results After Degradation Starts	Results Highly Variable, Constitution of Const	Results Often Outside LCS Limits, But No Degradation or Extreme Variability (Possible Matrix or Calibration Artifact in HT study, J flag)	Comment
Theophyline					Average	40.9	49.8	70.0	38.5	84.0	185.3	236.2	263.0	132.9	165.7	V)	<u> </u>	<u> </u>		
					Stdev	10.6	13.4	12.2	11.2	18.6	36.2	77.4	103.9	13.9	15.4					
	60	140	56	132	Normalized	100%	122%	171%	94%	205%	453%	577%	643%	325%	405%	Х			x	WSS high bias after day 0 WSS.
					% Rsd	25.8%	27.0%	17.5%	29.2%	22.1%	19.5%	32.8%	39.5%	10.5%	9.3%					
Thiabendazole					Average	85.6	92.1	97.7	98.4	98.0	35.0	100.6	82.1	102.7	96.1					
					Stdev	8.4	7.6	5.3	8.0	5.5	2.3	5.4	7.4	4.2	6.2					
	60	140	81	119	Normalized	100%	108%	114%	115%	114%	41%	118%	96%	120%	112%	x				
					% Rsd	9.8%	8.3%	5.4%	8.2%	5.7%	6.6%	5.4%	9.0%	4.1%	6.4%					
Triclocarban					Average	130.3	109.1	103.3	112.9	66.8	59.2	82.3	58.0	89.5	56.9					
					Stdev	8.8	5.7	6.1	4.7	4.9	4.4	9.3	5.1	13.1	5.5					Continuing WSS did
	60	140	61	148	Normalized	100%	84%	79%	87%	51%	45%	63%	45%	69%	44%	x				not match day 0 WSS, decrease due to calibration.
Triclosan					% Rsd	6.8%	5.2%	5.9%	4.2%	7.4%	7.4%	11.4%	8.8%	14.6%	9.6%					
TTICIOSati					Average	113.1	121.0	111.4	151.4	90.4	104.8	130.5	100.3	139.0	100.3					
		4.40	22	404	Stdev	3.5	3.9	3.8	4.3	4.8	6.9	6.8	5.2	13.8	5.6					
	60	140	33	131	Normalized	100%	107%	99%	134%	80%	93%	115%	89%	123%	89%	Х				
Trimethoprim					% Rsd Average	3.1%	3.2%	3.4%	2.8%	5.3%	6.5%	5.2%	5.2%	9.9%	5.6%					
·······carop······					Stdev	90.8	85.4	91.3	87.7 0.6	84.1	69.4	88.7	94.3	94.0	93.2					
	60	140	02	116	Normalized	4.9 100%	4.7	8.6	9.6	7.0	4.4	9.1	5.9	7.4	3.2	v				
	60	140	02	110	% Rsd	5.4%	94% 5.5%	101% 9.5%	97% 10.9%	93% 8.3%	77% 6.4%	98% 10.3%	104% 6.3%	104% 7.9%	103% 3.4%	X				
Warfarin					Average	124.8	126.6	126.8	135.7	115.8	118.7	171.1	145.5	193.7	154.4					
					Stdev	3.7	5.0	6.6	5.7	5.7	5.5	14.5	7.2	22.2	154.4					
	60	140	50	128	Normalized	100%	101%	102%	109%	93%	95%	137%	117%	155%	124%	X				
	00	1-10	55	120	% Rsd	3.0%	3.9%	5.2%	4.2%	4.9%	4.6%	8.5%	5.0%	11.4%	9.7%	۸				

Table 2. Laboratory Control Sample Results

	Working Stock Standard ID Analytical Date Days Since Spike	WSS 06-30-16 7/1/2016 0	WSS 06-30-16 7/3/2016 2	WSS 06-30-16 7/5/2016 4	WSS 06-30-16 7/8/2016 7	WSS 07-15-16 7/17/2016 16	WSS-07-25-16 7/31/2016 30	WSS 08-15-16 8/15/2016 45	WSS 08-29-16 8/30/2016 60	WSS 09-07-16 9/7/2016 69	WSS-09-21-16 9/21/2016 84				Control Average 3x St.	Control Average x St. Dev.)
Sample	Compound											Average	St. Dev.	3x St. Dev.	Lower Limit (/ Minus Dev.)	Upper Limit (/ Plus 3)
LCS1	17alpha ethynylestradiol - M-H	105.9	103.1	98.3	108.8	96.2	103.4	96.3	102.5	127.1	86.5	105.3	11.0	33.0	72.3	138.3
LCS2	17alpha ethynylestradiol - M-H	96.2	98.7	96.7	101.8	108.0	118.0	109.6	126.0	124.4	99.4					
LCS1	17B-Estradiol - M-H	109.1	101.2	101.8	105.3	92.6	100.5	103.3	105.1	121.3	92.0	105.7	11.3	33.8	71.9	139.5
LCS2	17B-Estradiol - M-H	102.2	100.3	92.8	111.0	105.0	99.5	111.4	126.1	136.3	97.3					
LCS1	2,4-D	102.7	66.8	98.9	103.5	96.5	94.5	98.4	98.2	128.8	90.6	97.1	14.5	43.4	53.7	140.5
LCS2	2,4-D	97.3	62.8	90.3	98.8	96.9	98.4	101.1	104.3	121.7	91.7					
LCS1	4-tert-OctylphenoL	84.9	86.8	79.9	112.2	87.7	88.2	82.5	100.6	109.2	90.4	90.2	10.4	31.1	59.1	121.3
LCS2	4-tert-OctylphenoL	68.8	89.5	82.9	101.2	90.3	78.5	87.5	98.3	95.7	88.9	404.5	2.0	0.0	02.5	440.4
LCS1	Acesulfame	98.2	100.5	99.9	109.7	104.3	100.2	99.1	103.0	99.2	102.6	101.5	3.0	8.9	92.5	110.4
LCS2 LCS1	Acesulfame	100.2	99.7 101.7	102.6	106.3	99.9 96.5	101.7	103.4	98.6 100.7	97.3 101.4	102.6	98.2	4.8	115	02.7	112.0
LCS1 LCS2	Acetaminophen Acetaminophen	93.4 90.4	99.9	101.8 97.8	104.2 101.3	96.5 106.5	96.9 96.7	95.7 96.7	100.7	101.4	89.1 89.6	98.2	4.8	14.5	83.7	112.8
LCS2 LCS1	Albuterol	79.2	117.8	85.9	99.3	122.7	91.9	96.8	102.9	61.2	63.0	89.8	21.9	65.8	24.0	155.6
LCS1 LCS2	Albuterol	88.4	101.9	73.1	105.0	98.6	64.0	134.3		70.0	62.9	09.0	21.9	05.6	24.0	155.6
LCS2 LCS1	Amoxicilin	95.6	102.6	98.0	100.5	75.2	104.5	98.9	98.2	122.9	88.6	103.9	14.2	42.6	61.3	146.6
LCS1	Amoxicilin	97.5	106.2	100.1	110.2	128.8	92.6	113.4	99.6	139.8	105.7	103.9	14.2	42.0	01.3	140.0
LCS1	Andorostenedione	126.5	88.7	99.5	114.6	92.0	96.9	128.1	97.8	95.2	109.6	101.0	12.7	38.2	62.7	139.2
LCS2	Andorostenedione	100.0	86.9	87.2	100.5	123.8	93.4	98.3	95.5	91.8	93.4	101.0	12.7	30.2	02.7	133.2
LCS1	Atenolol	123.8	94.4	107.2	118.1	89.6	76.6	100.6	107.6	100.6	107.8	102.4	11.8	35.4	67.0	137.8
LCS2	Atenolol	118.5	98.3	107.0	113.8	98.0	98.7	87.1	101.5	88.2	110.6	102.4	11.0	33.4	07.0	137.0
LCS1	Atrazine	97.3	112.2	99.6	109.5	97.8	98.0	95.2	92.4	100.1	102.2	101.6	6.6	19.8	81.8	121.4
LCS2	Atrazine	105.9	101.3	100.9	102.2	113.7	97.1	105.9	86.8	106.1	107.1	101.0	0.0	13.0	01.0	
LCS1	Bendroflumethiazide - M-H	103.7	97.3	97.7	107.3	83.7	94.2	90.2	99.3	85.0	103.9	94.6	7.0	21.1	73.6	115.7
LCS2	Bendroflumethiazide - M-H	94.4	91.2	95.4	106.2	89.7	90.1	93.8	93.9	83.0	92.6					
LCS1	Bezafibrate	96.4	92.9	98.8	106.8	87.9	92.4	85.6	98.3	106.7	112.3	100.0	8.8	26.4	73.6	126.4
LCS2	Bezafibrate	96.0	102.6	103.5	118.7	98.0	92.1	107.1	96.6	113.7	93.0					
LCS1	Bisphenol A	101.7	100.4	98.1	109.4	99.9	98.5	100.1	100.1	97.6	95.6	100.3	3.4	10.1	90.3	110.4
LCS2	Bisphenol A	101.0	102.2	103.3	106.1	101.4	98.2	101.0	99.9	95.9	96.0					
LCS1	Bromacil	99.4	92.0	94.8	101.9	88.7	92.7	101.0	83.9	91.7	98.1	95.2	5.4	16.2	79.0	111.5
LCS2	Bromacil	97.2	97.1	98.2	98.7	85.5	92.3	104.2	92.7	93.5	101.0					
LCS1	Clofibric acid	105.0	101.1	98.2	99.7	97.7	99.7	94.9	95.7	132.8	92.8	102.0	9.0	27.1	74.9	129.2
LCS2	Clofibric acid	102.2	100.0	94.6	93.8	99.4	98.7	103.6	107.8	115.1	107.7					
LCS1	Butalbital	100.4	99.2	103.3	111.9	85.6	93.0	91.5	90.6	94.9	88.7	95.5	6.7	20.2	75.3	115.6
LCS2	Butalbital	92.9	103.2	98.6	105.3	96.2	90.6	88.9	94.7	90.2	90.3					
LCS1	Butylparaben-NEG	98.2	94.8	101.5	96.5	88.9	96.0	93.8	99.6	124.3	96.4	98.7	10.1	30.4	68.2	129.1
LCS2	Butylparaben-NEG	95.8	91.6	87.1	97.6	95.1	84.7	103.1	113.9	120.3	94.6					
LCS1	Caffeine	99.6	98.1	99.3	114.8	104.3	99.9	103.2	92.4	102.3	101.6	103.6	5.9	17.6	86.0	121.2
LCS2	Caffeine	106.5	100.8	104.7	115.6	112.1	101.3	104.8	96.4	105.6	108.1					
LCS1	Carbadox	109.5	91.6	100.0	107.6	87.8	73.5	101.0	99.3	141.8	95.2	100.4	13.0	39.1	61.3	139.6
LCS2	Carbadox	101.0	93.7	99.5	102.8	96.2	94.3	95.0	109.9	112.9	96.1					
LCS1	Carbamazepine	96.5	95.1	105.9	112.5	103.4	93.9	100.4	96.6	105.8	90.1	99.3	6.2	18.5	80.7	117.8
LCS2	Carbamazepine	103.8	98.1	99.8	102.6	105.8	98.8	97.9	85.1	99.2	94.5	05.0	444	42.4	F2 7	120.0
LCS1	Carisoprodol	98.6	101.6	107.3	117.7	103.0	106.5	81.2	100.3	98.6	127.6	95.8	14.4	43.1	52.7	138.8
LCS2	Carisoprodol	94.5	79.6	91.1	80.3	110.8	85.9	75.6	97.7	79.8	77.7	100.1	11.2	22.0	66.3	124.0
LCS1	Chloramphenicol_M-H	99.8	103.5	89.5	108.2	92.2	101.0	103.5	104.7	128.3	103.5	100.1	11.3	33.9	66.2	134.0
LCS2	Chloridazan	82.0	91.7	82.6	96.4	100.7	93.8	102.1	110.9	118.3	89.0	07.0	7.5	22.5	75.4	120.4
LCS1	Chloridazon	101.7	98.9	102.7	106.5	88.7	94.8	94.2	88.4	97.1	108.0	97.9	7.5	22.5	75.4	120.4
LCS2	Chloridazon	92.9	99.5	101.0	98.4	85.6	94.4	102.2	89.5	96.7	116.9					

	Working Stock Standard ID Analytical Date Days Since Spike	WSS 06-30-16 7/1/2016 0	WSS 06-30-16 7/3/2016 2	WSS 06-30-16 7/5/2016 4	WSS 06-30-16 7/8/2016 7	WSS 07-15-16 7/17/2016 16	WSS-07-25-16 7/31/2016 30	WSS 08-15-16 8/15/2016 45	WSS 08-29-16 8/30/2016 60	WSS 09-07-16 9/7/2016 69	WSS-09-21-16 9/21/2016 84		C.	2 64	er Control (Average Is 3x St.	er Control (Average 3x St. Dev.)
Sample	Compound											Average	St. Dev.	3x St. Dev.	owe. imit Minu	Uppe Limit Plus
LCS1	Chlorotoluron	105.7	97.3	95.2	108.5	84.7	94.4	92.6	99.4	92.3	107.8	99.3	8.0	24.0	75.3	123.3
LCS2	Chlorotoluron	112.0	99.0	103.4	113.5	91.6	91.5	105.8	102.0	88.7	101.3					
LCS1	Cimetidine - PRM	119.0	109.2	105.7	99.2	79.3		103.7	103.5	120.3	104.2	101.9	10.4	31.2	70.7	133.2
LCS2	Cimetidine - PRM	96.7	111.8	96.7	101.4	103.9		82.7	104.4	99.8	93.2					
LCS1	Cotinine - PRM	94.7	99.2	106.4	115.5	101.7	91.9	100.7	98.6	103.4	89.6	97.7	7.5	22.5	75.2	120.2
LCS2	Cotinine - PRM	90.3	98.5	105.9	104.3	96.3	89.6	94.7	93.7	97.0	81.9					
LCS1	Cyanazine	99.0	98.7	100.5	109.5	101.4	101.2	96.9	102.6	98.9	97.7	99.9	3.9	11.7	88.2	111.6
LCS2	Cyanazine	94.9	99.0	98.7	104.7	99.2	95.2	103.0	92.7	98.4	105.6	04.7	44.2	22.6	C4 4	120.2
LCS1 LCS2	DACT DACT	104.0 89.0	104.4 83.9	98.5 89.3	110.8 91.3	87.8 96.0	99.3 92.7	107.2 82.8	99.1 97.0	97.9 72.9	115.7 74.3	94.7	11.2	33.6	61.1	128.3
LCS2 LCS1	DEA	100.2	105.9	104.2	107.8	96.5	97.8	96.2	102.0	96.6	109.8	101.2	5.2	15.6	85.6	116.8
LCS2	DEA	98.7	106.1	103.1	101.2	95.5	93.2	106.9	95.4	97.1	109.7	101.2	5.2	13.0	85.0	110.0
LCS1	DEET	104.6	109.6	103.8	110.2	93.8	96.1	93.0	88.0	94.8	100.2	96.3	6.8	20.5	75.8	116.8
LCS2	DEET	95.1	94.8	98.4	100.3	96.6	90.7	91.8	87.3	86.1	91.3	30.3	0.0	20.5	73.0	110.0
LCS1	Dehydronifedipine	107.2	94.0	96.4	110.1	96.9	96.9	114.0	100.1	100.2	96.4	104.3	7.5	22.5	81.8	126.8
LCS2	Dehydronifedipine	122.8	100.9	107.1	109.7	110.4	108.3	107.4	94.8	105.9	107.2					
LCS1	DIA	100.1	101.2	101.3	109.2	98.9	101.9	99.5	102.5	95.7	98.8	100.4	3.5	10.6	89.7	111.0
LCS2	DIA	94.3	103.1	103.0	101.5	99.8	102.1	100.6	103.5	93.8	96.5					
LCS1	Diazepam	99.5	102.3	100.8	111.5	92.8	98.1	96.9	98.9	99.6	105.1	101.1	4.9	14.8	86.3	115.9
LCS2	Diazepam	101.4	106.5	102.1	107.0	97.1	99.1	95.0	105.3	94.7	108.5					
LCS1	Diclofenac- M-H	98.5	98.1	98.7	104.8	92.2	97.7	100.1	108.2	137.3	105.6	104.3	12.2	36.7	67.6	141.1
LCS2	Diclofenac- M-H	97.2	96.1	97.9	101.8	98.4	100.3	104.2	104.7	139.1	105.4					
LCS1	Dilantin - M-H	82.5	95.1	87.8	104.5	79.0	81.1	95.1	102.5	97.2	97.9	86.8	10.6	31.7	55.1	118.5
LCS2	Dilantin - M-H	75.8	81.1	77.1	86.8	69.9	68.9	98.7	82.3	80.9	92.4					
LCS1	Diltiazem	107.8	84.2	106.9	106.4	92.9	96.7	92.4	88.9	95.3	112.7	100.1	8.6	25.7	74.3	125.8
LCS2	Diltiazem	108.0	94.0	103.5	117.2	103.2	94.2	94.2	101.6	94.5	107.3	100.0				122.5
LCS1	Diuron	111.4	100.0	100.1	105.7	92.0	98.1	97.6	101.5	127.1	98.1	102.8	9.3	27.8	75.1	130.6
LCS2	Diuron	100.9 97.7	100.8 78.4	91.5 99.4	105.7 91.0	95.5 104.0	97.3 95.4	99.0 82.8	111.6 95.0	123.3 120.4	99.2 108.5	100.8	12.1	36.3	64.5	137.0
LCS1 LCS2	Erythromycin Erythromycin	100.3	78.4 85.2	99.4 96.8	108.7	104.0	95.4 96.8	96.2	95.0 110.7	120.4 123.9	108.5	100.8	12.1	30.3	64.5	137.0
LCS2 LCS1	Estrone	96.3	97.9	100.9	111.9	103.5	97.2	87.2	110.6	88.6	98.6	99.7	8.1	24.4	75.3	124.0
LCS2	Estrone	104.4	95.3	100.5	111.9	97.4	95.0	99.6	101.8	112.3	82.8	33.7	0.1	24.4	75.5	124.0
LCS1	Ethylparaben	100.2	93.3	93.7	100.2	90.9	98.5	93.0	103.5	130.1	94.8	101.1	10.4	31.3	69.7	132.4
LCS2	Ethylparaben	96.1	92.1	95.4	104.0	98.4	93.3	105.9	117.1	121.0	99.8	101.1	10	31.3	03.7	132
LCS1	Flumequine	97.6	91.9	92.0	109.6	95.4	93.4	96.2	98.6	112.4	94.6	100.4	6.9	20.7	79.7	121.0
LCS2	Flumequine	105.0	98.8	103.1	105.4	100.8	95.9	104.7	91.0	112.4	108.6					
LCS1	Fluoxetine	110.8	97.3	108.1	113.4	95.6	97.8	67.3	97.8	101.1	99.0	102.5	14.4	43.2	59.3	145.8
LCS2	Fluoxetine	113.7	111.9	109.7	106.4	97.1	113.8	70.3	116.4	95.5	127.9					
LCS1	Gemfibrozil	104.6	101.7	105.6	101.2	108.8	93.8	98.6	99.5	83.4	111.6	102.2	11.5	34.6	67.6	136.8
LCS2	Gemfibrozil	107.5	101.3	100.7	108.3	139.8	92.5	107.9	97.4	87.5	93.1					
LCS1	Ibuprofen	100.2	106.8	94.1	103.0	87.0	100.1	91.8	102.5	135.6	91.5	100.6	13.0	38.9	61.7	139.5
LCS2	Ibuprofen	100.1	97.9	93.0	107.7	80.4	96.2	95.8	107.2	129.6	91.4					
LCS1	Iohexol - M+H	132.2	95.6	100.1	117.6	85.6	108.8	103.2	120.7	138.5	107.9	114.6	14.3	42.9	71.7	157.5
LCS2	Iohexol - M+H	127.7	115.0	126.2	117.0	113.4	97.1	102.4	127.4	132.1	124.3					
LCS1	Iopromide - PRM	103.0	93.1	102.8	110.3	94.3	86.0	108.9	88.7	103.1	87.3	111.2	17.4	52.3	58.9	163.5
LCS2	Iopromide - PRM	127.1	136.0	136.6	131.5	131.3	111.7	123.7	95.2	123.3	130.2					
LCS1	Isobuylparaben	98.2	94.9	101.7	96.5	88.8	96.0	93.8	99.7	124.3	96.3	98.7	10.2	30.5	68.2	129.1
LCS2	Isobuylparaben	95.8	91.7	87.1	97.5	95.0	84.8	103.1	113.9	120.3	94.5	105.0			00.1	100.0
LCS1	isoproturon	101.4	108.7	98.2	109.9	99.8	97.1	106.3	98.9	106.7	96.1	105.9	7.6	22.8	83.1	128.8
LCS2	isoproturon	121.7	111.6	113.3	111.8	116.9	103.3	113.3	92.4	106.1	105.1	05.0	0.5	20.6	67.2	1245
LCS1	Ketoprofen	95.4	101.7	94.9	115.3	108.2	93.2	104.8	100.3	103.3	105.6	95.9	9.5	28.6	67.3	124.5

Second S		Working Stock Standard ID Analytical Date Days Since Spike	WSS 06-30-16 7/1/2016 0	WSS 06-30-16 7/3/2016 2	WSS 06-30-16 7/5/2016 4	WSS 06-30-16 7/8/2016 7	WSS 07-15-16 7/17/2016 16	WSS-07-25-16 7/31/2016 30	WSS 08-15-16 8/15/2016 45	WSS 08-29-16 8/30/2016 60	WSS 09-07-16 9/7/2016 69	WSS-09-21-16 9/21/2016 84				Control (Average 3 3x St.	r Control (Average 3x St. Dev.)
Geographic St. St.	Sample	Compound											Average			ower. imit (Minus	
	LCS2	Ketoprofen	93.7	81.2	79.1	87.6	104.6	97.2	86.6	86.4	90.3	88.4					
Google 1903 1916 94.9 1912 1914 98.8 1910 2003 94.0 1933 208.0 18.8 35.3 7.7 1943 ISS Informerical 1943 1945 1945 195													99.7	9.8	29.5	70.2	129.2
Information 17510 17540 17540 17550	_																
Contingent 19.4 99.1 99.1 108.8 10.4 89.2 88.7 91.1 11.5 108.5 10.8 10.4 90.1 94.8 13.9													108.0	11.8	35.3	72.7	143.3
													102.0	16.4	40.4	F4.0	452.0
Information 104.0 99.3 105.7 101.4 93.4 101.3 89.3 101.4 177.2 96.6 100.9 104.3 31.7 71.7 134.1													103.8	16.4	49.1	54.8	152.9
Improve 104.7 94.7 101.5 98.3 97.1 100.8 94.6 112.4 131.2 97.3 109.5 105.3 105.7 104.1 105.2 100.7 104.3 94.6 100.0 97.4 110.8 120.9 111.7 132.9 105.5 1		•											102.9	10.4	21.2	71 7	13/11
Ligst Light person-Anticoprofied 112.9 119.7 19.07 19.08 99.6 19.09 19.4 110.8 125.9 125.3 110.9 10.5 31.5 78.3 191.4													102.9	10.4	31.2	71.7	134.1
Control Cont													109 9	10 5	31 5	78 3	141 4
		•											103.5	10.5	31.3	70.0	1.1.
Incident Method		· · · · · · · · · · · · · · · · · · ·											104.1	12.5	37.5	66.6	141.6
CS Methodamin		Meclofenamic Acid	97.2		97.5	102.4		100.1	104.2	104.7		105.5					
CS2 Metasarbir 915 100 7 94.8 112.8 98.6 94.4 105.1 92.0 104.7 115.2 103.4 92.2 75.7 75.7 131.0	LCS1	Meprobamate	102.4	93.4	95.4	114.0	110.9	92.5	104.3	99.4	101.2	111.6	110.0	11.2	33.7	76.3	143.7
Metazachfor 1112 116.3 87.9 105.2 114.1 101.0 101.0 87.8 106.1 112.5 10.8 14.2 47.7 58.0 143.5 101.0 106.4 101.4 101.4 112.5 108.0 14.2 17.5 101.0 101.5 101.5 101.0 101.5	LCS2	Meprobamate	121.1	116.9	119.4	126.4	133.5	110.9	123.7	104.7	108.6	110.2					
CS2 Methornin 90.1 87.4 105.4 112.9 120.3 88.1 101.0 106.4 111.4 112.5 100.8 14.2 42.7 58.0 143.5													103.4	9.2	27.6	75.7	131.0
Methy Meth																	
ICS2 Methylparaben - M-H 96.7 97.1 93.4 106.9 89.1 93.2 92.5 99.9 99.7 127.8 99.1 100.0 11.7 85.2 64.8 135.2 105.2 105.2 105.3 105.2 105.3 105.2 105.3 105.2 105.3 105.2 105.3 105.2 105.5 105													100.8	14.2	42.7	58.0	143.5
LCS Methylparaben - Methyl Methylparaben - Methylparaben																	
LCS2 Metolachlor 105.0 101.0 101.1 108.2 95.3 102.8 102.9 105.7 100.8 96.6 101.5 41. 12.4 89.1 113.9 LCS2 Mactolachlor 107.5 100.8 106.8 95.1 98.0 107.5 91.0 89.0 99.8 102.4 123.1 93.0 100.6 8.7 26.1 74.6 126.7 LCS2 Nagrosen 99.2 92.2 97.5 103.2 102.2 90.8 96.8 101.8 101.1 39.0 100.6 8.7 26.1 74.6 126.7 LCS2 Nagrosen 99.2 92.2 97.5 103.2 102.2 90.8 96.8 101.8 101.1 11.3 98.5 LCS2 Nafedjine 36.2 80.4 72.9 91.8 52.5 70.1 71.6 86.0 85.2 89.4 64.9 19.0 57.0 7.8 121.9 LCS2 Nafedjine 28.4 53.4 50.3 54.8 42.6 41.7 63.5 85.9 73.5 66.8 LCS3 Nonyl-phenol 77.9 86.1 101.1 111.9 98.5 69.5 76.9 96.9 107.8 84.4 95.6 15.9 47.6 48.0 143.2 LCS3 Nonyl-phenol 77.5 85.0 113.0 112.7 93.3 97.1 118.9 98.7 121.3 93.3 LCS3 Nonyl-phenol 79.5 80.0 130.1 112.7 93.3 97.1 118.9 98.7 121.3 93.3 LCS3 Nonyl-phenol 79.5 80.0 113.0 112.7 138.7 124.1 112.8 112.6 LCS3 Nonyl-phenol 105.6 110.1 101.8 117.7 138.7 124.1 112.8 112.6 LCS3 Nonyl-phenol 105.6 110.1 101.8 117.7 138.7 124.1 112.8 112.7 LCS4 Nonyl-phenol 105.6 110.1 101.8 117.7 138.7 124.1 112.8 112.7 LCS5 Nonyl-phenol 105.6 110.1 101.8 117.7 138.7 124.1 112.8 112.7 LCS5 Nonyl-phenol 105.6 110.1 101.8 117.7 138.7 124.1 112.8 112.7 LCS5 Nonyl-phenol 105.6 110.1 101.8 117.7 138.7 124.1 112.8 112.7 LCS5 Nonyl-phenol 105.6 100.1 100.8 117.7 138.7 124.1 124.8 126.7 100.1 103.9 124.1 105.8 LCS5 Nonyl-phenol 105.6 105.1 105.8 112.7 124.1 124.8 126.7 100.1 103.9 94.1 86.1 94.9 82.2 24.7 70.1 119.6 LCS5 Nonyl-phenol 105.6 105.6 105.8 105.8 102.8 103.8 102.8 LCS5 Nonyl-phenol		• •											100.0	11.7	35.2	64.8	135.2
ICS2 Metolachlor 107.5 100.8 104.3 105.2 102.9 98.1 100.7 98.4 94.2 95.1																	
LCS1 Naproxen 106.8 95.1 98.0 107.5 91.0 89.9 99.8 102.4 123.1 33.0 100.6 8.7 26.1 74.6 126.7													101.5	4.1	12.4	89.1	113.9
ICS2 Naproxem 99.2 92.2 97.5 103.2 102.2 90.8 96.8 109.8 116.3 98.5													100.6	0.7	26.4	74.6	426.7
CS2 Nifedipine 28.4 53.4 50.3 54.8 42.6 41.7 63.5 85.9 73.5 66.8													100.6	8.7	26.1	74.6	126.7
CS2 Nifedjpine 28.4 53.4 50.3 54.8 42.6 41.7 63.5 85.9 73.5 66.8		•											64.0	10.0	57.0	7.0	121.0
CS2 Nonyl-phenol 72.9 86.1 101.1 111.9 98.5 69.5 76.9 96.9 107.8 84.4 95.6 15.9 47.6 48.0 143.2													04.5	19.0	37.0	7.0	121.9
CS2 Non-Histerone 71.5 85.0 113.0 112.7 93.3 97.1 118.9 98.7 122.3 93.3		•											95.6	15 9	47.6	48.0	143 2
CS1 Norethisterone 95.5 103.4 93.0 106.5 92.3 104.4 96.2 107.9 108.6 97.2 109.1 12.4 37.3 71.8 146.4		• •											33.0	13.3	47.0	40.0	143.2
CS2 Norehisterone 106.2 110.1 102.8 117.7 138.7 124.1 124.8 126.7 109.2 116.8													109.1	12.4	37.3	71.8	146.4
CS1 Oxolinic Acid 100.4 101.9 95.5 112.7 100.1 92.2 98.8 90.0 105.4 95.1 108.0 12.3 37.0 71.0 145.0																	
CS1 Paraxanthine 101.6 93.7 93.2 104.9 101.8 94.7 100.1 103.9 94.1 86.1 94.9 8.2 24.7 70.1 119.6	LCS1				95.5	112.7		92.2	98.8		105.4	95.1	108.0	12.3	37.0	71.0	145.0
CS2 Paraxanthine S4.7 S6.6 S8.2 S6.3 S2.7 S7.4	LCS2	Oxolinic Acid	128.4	116.5	123.7	121.6	120.3	101.2	121.2	95.6	115.9	122.7					
CCS1 Pentoxifylline 90.6 104.1 97.8 110.4 97.4 94.7 106.8 92.6 107.5 102.4 107.8 12.1 36.3 71.5 144.1 CCS2 Pentoxifylline 122.8 115.9 108.3 122.6 101.6 103.9 132.2 96.5 124.7 123.9 CCS1 Phenazone 102.6 100.2 95.0 105.6 95.4 93.7 98.1 94.3 94.7 98.7 107.2 13.3 39.9 67.3 147.1 CCS2 Phenazone 135.1 128.2 118.1 120.2 117.8 104.9 123.5 94.0 101.8 122.9 CCS1 Primidone 99.8 97.9 89.2 122.3 100.0 108.3 124.3 103.2 89.7 111.4 105.1 13.5 40.6 64.5 145.6 CCS2 Primidone 91.3 109.1 86.2 103.8 129.7 96.7 126.0 117.2 86.9 108.2 CCS2 Progesterone 116.2 91.7 99.3 111.2 107.7 103.6 127.6 109.7 99.2 107.7 107.1 11.9 35.7 71.4 142.9 CCS2 Progesterone 100.4 103.9 101.9 117.6 108.4 85.2 139.7 105.6 106.9 99.3 CCS1 Propazine 96.4 101.3 102.9 108.0 102.3 94.9 100.6 99.4 102.7 92.2 106.1 10.2 30.7 75.5 136.8 CCS2 Propazine 113.6 115.6 113.8 116.3 131.9 95.1 121.1 97.0 106.0 111.2 CCS2 Propazine 100.0 95.8 97.0 103.5 90.9 99.0 91.2 98.9 126.9 97.7 102.2 11.3 33.9 68.3 136.1 CCS2 Propylparaben 98.2 95.9 86.9 106.4 102.4 95.1 106.1 117.3 131.4 103.6 CCS2 Propylparaben 98.2 95.9 86.9 106.4 102.4 95.1 106.1 117.3 131.4 103.6 CCS3 Cuinoline 100.2 100.8 105.7 14.8 103.5 93.5 94.3 103.1 101.1 100.2 102.4 94.7 85.5 14.9 CCS3 Cuinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 CCS4 Cuinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 CCS5 Cuinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 CCS5 Cuinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 CCS5 Cuinoline 104.7 95.	LCS1	Paraxanthine	101.6	93.7	93.2	104.9	101.8	94.7	100.1	103.9	94.1	86.1	94.9	8.2	24.7	70.1	119.6
CCS2 Pentoxifylline 122.8 115.9 108.3 122.6 101.6 103.9 132.2 96.5 124.7 123.9	LCS2				88.2	86.3			108.9		86.7	86.7					
LCS1 Phenazone 102.6 100.2 95.0 105.6 95.4 93.7 98.1 94.3 94.7 98.7 107.2 13.3 39.9 67.3 147.1 LCS2 Phenazone 135.1 128.2 118.1 120.2 117.8 104.9 123.5 94.0 101.8 122.9 LCS1 Primidone 99.8 97.9 89.2 122.3 100.0 108.3 124.3 103.2 89.7 111.4 105.1 13.5 40.6 64.5 145.6 LCS2 Primidone 91.3 109.1 86.2 103.8 129.7 96.7 126.0 117.2 86.9 108.2 LCS1 Progesterone 116.2 91.7 99.3 111.2 107.7 103.6 127.6 109.7 99.2 107.7 107.1 11.9 35.7 71.4 142.9 LCS2 Progesterone 100.4 103.9 101.9 117.6 108.4 85.2 139.7 105.6 106.9 99.3 LCS1 Propazine 96.4 101.3		•											107.8	12.1	36.3	71.5	144.1
LCS2 Phenazone 135.1 128.2 118.1 120.2 117.8 104.9 123.5 94.0 101.8 122.9 LCS1 Primidone 99.8 97.9 89.2 122.3 100.0 108.3 124.3 103.2 89.7 111.4 105.1 13.5 40.6 64.5 145.6 LCS2 Primidone 91.3 109.1 86.2 103.8 129.7 96.7 126.0 117.2 86.9 108.2		•															
LCS1 Primidone 99.8 97.9 89.2 122.3 100.0 108.3 124.3 103.2 89.7 111.4 105.1 13.5 40.6 64.5 145.6 LCS2 Primidone 91.3 109.1 86.2 103.8 129.7 96.7 126.0 117.2 86.9 108.2 LCS1 Progesterone 116.2 91.7 99.3 111.2 107.7 103.6 127.6 109.7 99.2 107.7 107.1 11.9 35.7 71.4 142.9 LCS2 Progesterone 100.4 103.9 101.9 117.6 108.4 85.2 139.7 105.6 106.9 99.3													107.2	13.3	39.9	67.3	147.1
LCS2 Primidone 91.3 109.1 86.2 103.8 129.7 96.7 126.0 117.2 86.9 108.2 LCS1 Progesterone 116.2 91.7 99.3 111.2 107.7 103.6 127.6 109.7 99.2 107.7 107.1 11.9 35.7 71.4 142.9 LCS2 Progesterone 100.4 103.9 101.9 117.6 108.4 85.2 139.7 105.6 106.9 99.3																	
LCS1 Progesterone 116.2 91.7 99.3 111.2 107.7 103.6 127.6 109.7 99.2 107.7 107.1 11.9 35.7 71.4 142.9 LCS2 Progesterone 100.4 103.9 101.9 117.6 108.4 85.2 139.7 105.6 106.9 99.3													105.1	13.5	40.6	64.5	145.6
LCS2 Progesterone 100.4 103.9 101.9 117.6 108.4 85.2 139.7 105.6 106.9 99.3 LCS1 Propazine 96.4 101.3 102.9 108.0 102.3 94.9 100.6 99.4 102.7 92.2 106.1 10.2 30.7 75.5 136.8 LCS2 Propazine 113.6 115.6 113.8 116.3 131.9 95.1 121.1 97.0 106.0 111.2 LCS1 Propylparaben 100.0 95.8 97.0 103.5 90.9 99.0 91.2 98.9 126.9 97.7 102.2 11.3 33.9 68.3 136.1 LCS2 Propylparaben 98.2 95.9 86.9 106.4 102.4 95.1 106.1 117.3 131.4 103.6 LCS1 Quinoline 100.2 100.8 105.7 114.8 103.5 93.5 94.3 103.1 101.1 100.2 4.9 14.7 <													107.1	11.0	25.7	74.4	1120
LCS1 Propazine 96.4 101.3 102.9 108.0 102.3 94.9 100.6 99.4 102.7 92.2 106.1 10.2 30.7 75.5 136.8 LCS2 Propazine 113.6 115.6 113.8 116.3 131.9 95.1 121.1 97.0 106.0 111.2 LCS1 Propylparaben 100.0 95.8 97.0 103.5 90.9 99.0 91.2 98.9 126.9 97.7 102.2 11.3 33.9 68.3 136.1 LCS2 Propylparaben 98.2 95.9 86.9 106.4 102.4 95.1 106.1 117.3 131.4 103.6 LCS1 Quinoline 100.2 100.8 105.7 114.8 103.5 93.5 94.3 103.1 101.1 100.2 100.2 4.9 14.7 85.5 114.9 LCS2 Quinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 LCS1 Simazine 93.4 99.5		_											107.1	11.9	35.7	/1.4	142.9
LCS2 Propazine 113.6 115.6 113.8 116.3 131.9 95.1 121.1 97.0 106.0 111.2 LCS1 Propylparaben 100.0 95.8 97.0 103.5 90.9 99.0 91.2 98.9 126.9 97.7 102.2 11.3 33.9 68.3 136.1 LCS2 Propylparaben 98.2 95.9 86.9 106.4 102.4 95.1 106.1 117.3 131.4 103.6 LCS1 Quinoline 100.2 100.8 105.7 114.8 103.5 93.5 94.3 103.1 101.1 100.2 100.2 4.9 14.7 85.5 114.9 LCS2 Quinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 LCS1 Simazine 93.4 99.5 99.8 104.8 98.7 99.8 97.7 97.8 101.4 95.9 97.7 3.6 10.9													106.1	10.2	20.7	75 F	126.0
LCS1 Propylparaben 100.0 95.8 97.0 103.5 90.9 99.0 91.2 98.9 126.9 97.7 102.2 11.3 33.9 68.3 136.1 LCS2 Propylparaben 98.2 95.9 86.9 106.4 102.4 95.1 106.1 117.3 131.4 103.6 LCS1 Quinoline 100.2 100.8 105.7 114.8 103.5 93.5 94.3 103.1 101.1 100.2 100.2 4.9 14.7 85.5 114.9 LCS2 Quinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 LCS1 Simazine 93.4 99.5 99.8 104.8 98.7 99.8 97.7 97.8 101.4 95.9 97.7 3.6 10.9 86.8 108.5													1.00.1	10.2	50.7	/3.5	120.0
LCS2 Propylparaben 98.2 95.9 86.9 106.4 102.4 95.1 106.1 117.3 131.4 103.6 LCS1 Quinoline 100.2 100.8 105.7 114.8 103.5 93.5 94.3 103.1 101.1 100.2 100.2 4.9 14.7 85.5 114.9 LCS2 Quinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 LCS1 Simazine 93.4 99.5 99.8 104.8 98.7 99.8 97.7 97.8 101.4 95.9 97.7 3.6 10.9 86.8 108.5													102.2	11 2	33.0	68.3	136.1
LCS1 Quinoline 100.2 100.8 105.7 114.8 103.5 93.5 94.3 103.1 101.1 100.2 100.2 4.9 14.7 85.5 114.9 LCS2 Quinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 LCS1 Simazine 93.4 99.5 99.8 104.8 98.7 99.8 97.7 97.8 101.4 95.9 97.7 3.6 10.9 86.8 108.5													102.2	11.3	33.3	00.3	130.1
LCS2 Quinoline 104.7 95.4 102.5 95.9 99.3 98.9 96.5 100.6 95.8 97.0 LCS1 Simazine 93.4 99.5 99.8 104.8 98.7 99.8 97.7 97.8 101.4 95.9 97.7 3.6 10.9 86.8 108.5													100 2	4 9	14 7	85 5	114 9
LCS1 Simazine 93.4 99.5 99.8 104.8 98.7 99.8 97.7 97.8 101.4 95.9 97.7 3.6 10.9 86.8 108.5													100.2	5	±7.7	55.5	±± 1.0
													97.7	3.6	10.9	86.8	108.5

	Working Stock Standard ID Analytical Date Days Since Spike	WSS 06-30-16 7/1/2016 0	WSS 06-30-16 7/3/2016 2	WSS 06-30-16 7/5/2016 4	WSS 06-30-16 7/8/2016 7	WSS 07-15-16 7/17/2016 16	WSS-07-25-16 7/31/2016 30	WSS 08-15-16 8/15/2016 45	WSS 08-29-16 8/30/2016 60	WSS 09-07-16 9/7/2016 69	WSS-09-21-16 9/21/2016 84				Control Average 3x St.	Control Average x St. Dev.)
Sample	Compound											Average	St. Dev.	3x St. Dev.	Lower Limit (/ Minus Dev.)	Upper Limit (/ Plus 3)
LCS1	Sucralose - M-H	95.1	102.3	105.7	103.9	96.4	98.1	97.2	108.1	102.1	104.0	101.8	3.9	11.8	90.1	113.6
LCS2	Sucralose - M-H	102.4	101.0	104.5	100.0	100.9	105.7	107.8	101.7	95.0	105.2					
LCS1	Sulfachloropyridazine	92.1	95.4	95.3	111.3	103.6	92.9	101.3	95.8	103.7	115.2	99.2	11.4	34.1	65.1	133.3
LCS2	Sulfachloropyridazine	90.2	88.6	87.7	98.9	86.5	92.7	100.5	91.7	106.1	134.4					
LCS1	Sulfadiazine	96.7	104.2	105.5	108.8	107.6	105.3	107.4	96.3	111.6	99.8	103.0	6.0	18.0	85.0	121.0
LCS2	Sulfadiazine	92.6	98.0	97.7	98.8	102.5	103.7	115.5	99.9	110.4	97.5					
LCS1	Sulfadimethoxine	100.5	96.0	100.9	105.0	95.8	100.6	92.2	96.5	133.8	92.1	101.0	12.1	36.3	64.8	137.3
LCS2	Sulfadimethoxine	89.3	97.2	92.6	92.9	95.0	103.6	102.2	111.4	131.4	91.4					
LCS1	Sulfamerazine	92.5	92.8	94.8	105.8	93.0	89.3	101.5	90.1	110.3	103.9	102.7	10.7	32.0	70.7	134.7
LCS2	Sulfamerazine	108.0	111.7	102.5	114.4	105.1	86.7	115.9	96.3	113.5	126.2					
LCS1	Sulfamethazine	102.1	95.2	101.7	111.7	88.5	95.2	98.5	109.6	130.3	113.6	104.1	11.0	33.0	71.0	137.1
LCS2	Sulfamethazine	98.1	90.8	95.0	105.2	98.6	94.7	107.9	106.3	126.6	111.6					
LCS1	Sulfamethizole	98.5	92.3	99.5	108.4	82.7	91.6	92.0	94.1	94.2	106.5	95.4	6.4	19.2	76.3	114.6
LCS2	Sulfamethizole	93.4	94.1	98.4	103.7	89.8	88.8	89.3	93.9	94.6	103.0					
LCS1	Sulfamethoxazole	99.7	101.4	101.2	106.4	101.9	99.8	100.1	102.6	101.5	102.2	100.5	2.4	7.3	93.3	107.8
LCS2	Sulfamethoxazole	100.5	98.9	104.1	102.2	98.1	98.0	98.9	96.5	96.6	100.2					
LCS1	Sulfathiazole	95.8	93.9	93.7	101.6	89.5	91.5	99.2	95.1	131.8	100.5	97.2	11.9	35.7	61.6	132.9
LCS2	Sulfathiazole	85.7	82.1	80.4	100.8	102.3	84.6	94.8	114.3	111.3	95.8					
LCS1	Sulfometuron methyl	103.1	96.6	95.4	108.3	95.9	92.2	103.1	84.7	104.8	98.0	93.3	9.5	28.5	64.7	121.8
LCS2	Sulfometuron methyl	93.7	87.5	94.8	83.0	85.7	105.8	92.2	69.5	84.9	85.9					
LCS1	TCEP	111.9	102.5	99.9	107.3	92.9	96.5	108.7	97.4	101.4	98.6	97.9	8.8	26.5	71.4	124.4
LCS2	TCEP	103.7	95.8	89.6	107.7	75.0	100.7	94.0	88.2	101.4	85.2					
LCS1	TCPP	108.8	99.3	103.7	117.0	124.0	117.0	119.3	84.6	165.3	82.2	110.4	30.9	92.7	17.7	203.1
LCS2	TCPP	119.8	98.0	84.2	111.3	77.2	120.0	117.3	85.7	203.8	69.8					
LCS1	TDCPP - PRM	124.3	99.8	101.7	111.7	113.6	101.5	137.6	101.1	138.4	80.5	98.4	24.2	72.6	25.8	171.1
LCS2	TDCPP - PRM	101.2	77.2	74.3	78.4	131.3	81.6	76.8	110.3	83.1	44.3					
LCS1	Testosterone	101.1	106.3	104.5	118.1	94.8	99.0	98.2	101.4	92.2	82.7	98.9	9.3	28.0	70.9	126.9
LCS2	Testosterone	100.4	103.6	110.8	112.8	82.4	96.9	95.4	93.4	98.7	85.5					
LCS1	Theobromine	66.2	102.6	106.5	111.4	114.8	82.8	101.3	99.1	101.0	111.2	97.3	14.0	42.0	55.3	139.3
LCS2	Theobromine	67.1	92.7	108.1	107.3	98.9	113.1	81.8	93.0	96.6	90.8					
LCS1	Theophyline	77.7	91.3	101.8	106.1	114.3	105.6	83.2	99.0	94.4	110.2	94.1	12.6	37.8	56.3	131.9
LCS2	Theophyline	70.1	96.2	90.0	88.1	108.3	92.5	67.7	93.7	90.3	100.7					
LCS1	Thiabendazole	100.7	97.5	96.3	108.5	90.0	95.4	100.0	89.5	97.5	104.3	100.4	6.3	19.0	81.3	119.4
LCS2	Thiabendazole	105.7	102.2	105.0	112.3	109.8	98.4	96.5	95.3	95.4	107.0					
LCS1	Triclocarban	128.5	97.0	101.8	105.6	74.9	99.8	103.2	89.2	129.2	98.4	104.5	14.6	43.9	60.6	148.4
LCS2	Triclocarban	125.2	102.1	101.2	112.2	92.8	95.4	121.7	99.4	123.3	88.9					
LCS1	Triclosan	73.4	77.1	82.8	91.6	80.4	83.3	73.2	85.0	124.5	91.6	81.6	16.3	49.0	32.5	130.6
LCS2	Triclosan	60.8	60.7	60.3	79.0	76.3	62.4	75.8	96.8	110.8	85.6					
LCS1	Trimethoprim	96.4	87.5	95.8	108.8	105.2	101.9	104.1	100.7	103.6	96.2	98.6	5.7	17.0	81.6	115.5
LCS2	Trimethoprim	103.5	91.1	94.8	90.0	102.3	103.6	100.4	94.4	94.7	96.2					
LCS1	Warfarin	89.8	93.1	92.4	99.9	67.2	84.8	92.1	96.3	115.5	90.4	89.0	12.9	38.8	50.2	127.8
LCS2	Warfarin	80.9	80.1	77.7	92.2	61.4	73.2	99.0	105.3	99.4	89.9					

Table 3. Raw Laboratory Results

Working S	tock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days omee opine			-	-				33		0.
Compound	Sample Name										
17 alpha ethynylestradiol - M-H	LCS1	105.9	103.1	98.3	108.8	96.2	103.4	96.3	102.5	127.1	86.5
. , ,	HDR-1	92.9	82.7	95.1	90.9	84.8	74.4	105.2	109.2	148.4	125.3
	HDR-2	90.6	88.6	87.2	85.9	75.9	75.7	101.2	114.5	93.8	106.1
	HDR-3	81.4	88.1	84.7	87.1	80.7	77.4	91.6	106.2	117.2	82.3
	HDR-4	85.9	91.0	86.1	86.3	67.3	73.7	87.5	97.2	103.6	85.9
	HDR-5	80.9	97.2	84.7	97.2	80.5	79.4	96.0	123.8	121.4	79.7
	HDR-6	87.9	87.6	86.7	84.0	96.8	75.1	101.0	121.1	141.2	95.2
	HDR-7	86.5	89.9	89.2	83.7	85.9	74.2	88.4	114.1	129.5	91.7
	HDR-8	115.4	90.2	105.5	83.1	78.7	72.8	95.9	104.8	124.1	103.5
	HDR-9	86.9	84.1	97.0	103.8	84.2	82.7	100.5	109.7	142.3	89.3
	HDR-10	86.2	78.5	82.6	86.7	88.6	79.4	112.0	117.7	132.2	106.0
	HDR-11	86.8	93.6	83.1	84.8	82.3	84.8	112.4	99.5	149.2	81.3
	LCS2	96.2	98.7	96.7	101.8	108.0	118.0	109.6	126.0	124.4	99.4
17B-Estradiol - M-H	LCS1	109.1	101.2	101.8	105.3	92.6	100.5	103.3	105.1	121.3	92.0
175 250 44161 11111	HDR-1	100.9	99.4	93.8	104.5	98.1	84.3	120.1	105.5	115.1	113.7
	HDR-2	97.6	101.3	96.5	97.1	75.4	76.8	106.2	107.0	84.0	103.6
	HDR-3	93.7	96.7	98.5	99.4	83.9	79.3	99.4	105.2	121.9	86.4
	HDR-4	94.4	96.5	98.1	98.5	77.8	74.0	104.0	95.1	100.9	95.3
	HDR-5	101.2	96.2	98.6	89.3	70.0	82.6	105.1	112.9	118.1	96.8
	HDR-6	99.4	91.4	92.6	97.3	89.6	77.1	105.6	101.2	132.9	101.9
	HDR-7	89.9	98.4	94.7	102.8	84.4	79.8	110.8	114.4	118.5	91.9
	HDR-8	105.8	99.8	94.8	94.5	76.3	74.3	96.7	108.3	128.8	97.8
	HDR-9	92.7	100.9	97.7	96.7	82.5	75.1	109.1	111.9	122.7	92.2
	HDR-10	101.3	98.3	94.3	90.5	74.8	79.1	94.6	98.1	131.6	89.1
	HDR-11	99.5	100.7	93.5	65.7	84.2	84.2	104.6	115.4	132.0	93.7
	LCS2	102.2	100.3	92.8	111.0	105.0	99.5	111.4	126.1	136.3	97.3
2,4-D	LCS1	102.7	66.8	98.9	103.5	96.5	94.5	98.4	98.2	128.8	90.6
2,4-0	HDR-1	111.0	96.6	122.4	137.2	129.0	96.4	104.6	101.2	160.0	175.0
	HDR-2	127.0	100.0	132.7	125.2	95.9	89.4	113.0	104.8	110.7	157.8
	HDR-3	108.5	104.8	131.5	133.3	120.8	85.9	129.8	117.8	149.5	160.8
	HDR-4	126.2	77.0	121.8	135.8	124.8	83.5	96.3	107.0	112.5	132.0
	HDR-5	121.5	83.6	119.6	110.1	106.7	92.8	121.6	126.3	146.6	156.7
	HDR-6	134.1	76.7	108.8	129.6	108.9	86.2	102.0	111.5	157.3	138.3
	HDR-7	113.5	98.5	119.5	125.0	94.3	87.3	106.9	100.9	128.6	158.0
	HDR-8	149.1	90.6	113.4	127.0	113.3	77.5	101.4	111.4	155.9	112.3
	HDR-9	128.1	88.4	132.7	120.1	119.9	78.3	104.7	110.3	152.8	130.0
	HDR-10	106.6	87.2	139.3	113.5	114.2	79.5	104.5	109.5	151.2	137.5
	HDR-11	150.0	75.9	108.5	104.2	101.5	80.1	99.3	121.0	154.8	123.4
	LCS2	97.3	62.8	90.3	98.8	96.9	98.4	101.1	104.3	121.7	91.7
	LCS1	84.9	86.8	79.9	112.2	87.7	88.2	82.5	100.6	109.2	90.4
A tout Octube and	HDR-1	80.8	118.9	119.6	143.8	-0.3	87.4	145.3	106.4	105.3	116.4
4-tert-OctylphenoL	HDR-2	96.1	144.6	126.0	142.8	77.1	87.1	156.0	106.5	110.9	109.2
	HDR-3	82.4	131.6	105.2	144.0	74.0	81.0	126.8	101.3	100.3	91.8
	HDR-4	79.5	112.3	113.5	134.9	65.2	71.7	121.4	101.3	81.0	76.4
	HDR-5	90.5	128.2	121.3	106.7	69.8	84.8	117.8	146.2	96.3	99.1
	HDR-6	86.1	108.7	125.1	132.8	64.5	79.0	122.9	104.4	112.3	97.3
	יוטוג-ט	00.1	100.7	149.1	134.0	04.5	73.0	144.3	104.4	114.3	31.3

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days Since Spike	<u> </u>		7	,	10	30		00	03	04
Compound	Sample Name										
	HDR-7	79.4	118.2	126.5	146.6	64.0	81.9	120.8	107.1	107.6	90.5
	HDR-8	78.1	121.2	119.3	134.3	64.4	78.8	111.5	106.6	97.7	97.6
	HDR-9	86.1	114.9	129.3	123.3	78.5	84.7	119.3	101.5	99.5	89.7
	HDR-10	76.2	116.7	138.2	110.2	73.2	79.7	124.4	129.1	129.1	105.7
	HDR-11	93.6	114.1	123.5	106.9	68.4	78.9	136.7	88.1	108.8	99.5
	LCS2	68.8	89.5	82.9	101.2	90.3	78.5	87.5	98.3	95.7	88.9
Acesulfame	LCS1	98.2	100.5	99.9	109.7	104.3	100.2	99.1	103.0	99.2	102.6
Accountine	HDR-1	103.5	103.0	103.0	96.1	96.8	92.5	112.1	97.9	117.2	114.3
	HDR-2	97.5	101.9	103.1	87.9	101.3	86.5	91.1	97.2	115.6	137.4
	HDR-3	88.5	99.2	97.4	105.4	97.7	87.4	96.5	99.1	119.5	132.3
	HDR-4	102.9	90.0	81.4	93.9	95.8	90.6	104.0	91.9	116.1	122.5
	HDR-5	101.1	101.2	86.7	94.6	96.6	96.4	103.1	102.8	125.0	128.6
	HDR-6	86.7	99.5	105.4	105.8	99.6	85.3	110.3	94.9	120.9	126.6
	HDR-7	92.7	89.2	99.3	106.7	92.6	87.7	114.7	98.9	115.6	129.6
	HDR-8	93.5	96.5	88.0	96.3	90.0	87.9	103.8	98.2	116.1	130.5
	HDR-9	95.4	83.7	97.3	86.9	97.3	94.9	109.9	110.1	119.7	112.2
	HDR-10	87.9	101.3	86.3	94.7	97.8	82.5	102.3	108.2	121.0	119.8
	HDR-11	102.1	101.0	100.0	74.9	97.5	78.2	104.8	95.7	122.4	126.9
	LCS2	100.2	99.7	102.6	106.3	99.9	101.7	103.4	98.6	97.3	102.6
Acetaminophen	LCS1	93.4	101.7	101.8	104.2	96.5	96.9	95.7	100.7	101.4	89.1
- г	HDR-1	92.9	101.1	103.8	99.4	82.4	85.2	109.2	85.2	83.3	83.2
	HDR-2	91.1	101.3	97.8	121.0	67.6	81.0	108.6	83.7	76.5	81.1
	HDR-3	84.0	128.2	111.3	105.8	77.4	69.1	109.8	82.4	72.2	73.3
	HDR-4	73.8	90.4	109.7	101.1	75.4	60.7	108.8	84.6	60.8	80.0
	HDR-5	88.8	96.0	123.9	109.3	94.4	81.4	111.9	111.7	88.2	69.5
	HDR-6	94.1	96.9	115.4	124.1	88.3	74.4	106.9	83.8	75.3	78.8
	HDR-7	96.8	84.7	119.5	101.5	117.8	92.5	111.4	79.4	65.2	83.7
	HDR-8	75.0	105.9	107.9	116.6	79.8	71.9	89.9	80.4	61.7	80.1
	HDR-9	87.4	89.1	112.1	116.2	91.0	74.9	106.5	82.3	74.9	88.9
	HDR-10	89.3	122.1	107.2	98.1	84.2	71.4	90.5	88.6	77.0	87.4
	HDR-11	113.0	127.4	111.0	69.7	89.7	73.0	101.4	83.1	69.0	83.7
	LCS2	90.4	99.9	97.8	101.3	106.5	96.7	96.7	102.9	101.4	89.6
Albuterol	LCS1	79.2	117.8	85.9	99.3	122.7	91.9	96.8	248.8	61.2	63.0
	HDR-1	101.7	109.4	88.2	122.0	125.8	83.6	178.8	731.0	89.7	127.6
	HDR-2	109.3	111.0	128.1	141.8	152.6	110.4	152.2	391.6	126.0	132.1
	HDR-3	94.4	98.0	96.4	137.7	156.8	84.0	175.7	619.1	103.2	149.6
	HDR-4	102.6	106.3	84.7	136.8	108.9	56.8	115.6	561.6	92.0	119.5
	HDR-5	119.3	103.4	99.6	140.7	113.6	93.3	175.1	478.2	101.8	121.2
	HDR-6	95.6	105.5	122.0	112.4	120.0	86.2	146.6	479.5	108.6	130.7
	HDR-7	93.9	101.4	75.1	109.7	104.2	73.7	133.1	589.4	96.0	117.5
	HDR-8	112.3	117.6	132.0	109.8	127.1	93.5	136.7	576.6	90.0	102.3
	HDR-9	115.8	114.9	122.6	80.9	132.6	43.4	147.9	575.2	78.8	133.6
	HDR-10	121.4	112.4	99.2	123.0	129.6	48.2	133.1	1136.2	128.1	108.0
	HDR-11	98.5	99.2	113.4	103.5	133.2	45.9	181.4	380.5	117.0	105.0
	LCS2	88.4	101.9	73.1	105.0	98.6	64.0	134.3	56.7	70.0	62.9

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days Since Spike	- J		7	,	10	30	43		03	04
Compound	Sample Name										
Amoxicilin	LCS1	95.6	102.6	98.0	100.5	75.2	104.5	98.9	98.2	122.9	88.6
	HDR-1	39.1	33.5	54.5	42.1	304.8	123.0	474.9	750.1	728.1	577.0
	HDR-2	31.8	38.8	18.3	48.7	333.8	113.9	445.2	727.5	578.9	650.1
	HDR-3	13.1	19.9	59.8	40.4	264.6	105.1	443.8	625.1	717.3	580.4
	HDR-4	45.5	31.9	18.0	47.1	338.5	75.1	419.8	657.9	701.4	583.7
	HDR-5	28.3	21.4	42.2	33.9	279.6	87.0	393.6	600.5	655.3	690.4
	HDR-6	39.5	25.2	29.2	46.5	226.8	106.5	368.8	735.5	668.8	588.5
	HDR-7	10.4	36.6	36.5	28.9	311.9	92.5	427.6	646.5	771.7	611.4
	HDR-8	23.2	31.5	57.7	37.8	362.4	119.2	339.2	609.5	609.5	636.5
	HDR-9	26.5	23.7	30.6	26.7	267.5	112.5	436.6	638.6	755.0	685.6
	HDR-10	51.6	25.4	44.8	18.4	350.1	72.5	289.8	786.0	606.3	471.4
	HDR-11	48.9	29.4	29.9	20.4	371.8	106.0	456.4	684.6	717.4	574.3
	LCS2	97.5	106.2	100.1	110.2	128.8	92.6	113.4	99.6	139.8	105.7
Andorostenedione	LCS1	126.5	88.7	99.5	114.6	92.0	96.9	128.1	97.8	95.2	109.6
Andorostenedione	HDR-1	63.4	68.9	67.7	81.1	67.3	61.4	71.4	91.7	77.0	98.1
	HDR-2	63.8	78.6	74.2	77.8	69.8	46.8	88.2	83.4	94.0	92.9
	HDR-3	59.5	58.0	60.8	83.4	101.7	54.8	70.9	79.7	74.9	94.0
	HDR-4	64.0	48.4	55.4	78.5	82.2	39.9	82.2	75.3	93.3	84.7
	HDR-5	55.9	64.6	65.3	69.6	92.0	54.3	72.9	125.0	91.1	89.3
	HDR-6	77.0	57.8	62.0	66.5	87.2	50.7	79.1	81.3	95.8	102.6
	HDR-7	74.3	63.4	60.8	76.6	94.6	44.5	92.1	97.3	86.4	108.3
	HDR-8	74.3	60.2	60.1	76.9	81.5	49.2	60.1	96.0	78.8	101.7
	HDR-9	73.0	68.4	70.4	68.1	92.7	49.2	88.0	78.7	97.1	109.0
	HDR-10	73.6	50.1	64.4	74.1	82.5	50.3	68.9	126.1	98.3	101.5
	HDR-11	79.1	56.8	74.3	47.1	87.5	46.7	92.4	67.6	78.4	129.6
	LCS2	100.0	86.9	87.2	100.5	123.8	93.4	98.3	95.5	91.8	93.4
	LCS1	123.8	94.4	107.2	118.1	89.6	76.6	100.6	107.6	100.6	107.8
Atenolol	HDR-1	49.8	38.6	35.6	53.5	41.3	37.3	52.2	57.5	57.9	56.0
	HDR-2	45.8	43.1	40.6	49.1	41.2	33.6	42.0	59.2	56.5	53.3
	HDR-3	51.9	36.0	37.6	51.8	37.8	31.7	41.3	68.2	55.0	51.0
	HDR-4	42.6	36.8	40.3	47.3	43.0	31.5	48.7	64.4	54.0	51.6
	HDR-5	54.6	40.0	42.0	50.1	42.9	34.8	45.6	73.7	60.6	51.6
	HDR-6	48.5	33.7	39.2	45.2	38.2	30.9	46.8	66.8	53.8	49.8
	HDR-7	47.6	38.1	44.7	48.6	39.6	31.7	42.4	69.3	60.4	49.2
	HDR-8	40.0	36.0	36.2	46.1	39.5	35.9	48.0	70.3	53.3	53.0
	HDR-9	47.0	42.0	39.4	43.4	43.0	34.3	44.5	71.3	57.7	47.8
	HDR-10	40.8	36.3	40.8	48.6	41.2	36.1	52.3	93.5	61.1	51.1
	HDR-11	51.9	37.2	37.5	37.8	42.1	33.4	50.0	67.4	55.1	53.9
	LCS2	118.5	98.3	107.0	113.8	98.0	98.7	87.1	101.5	88.2	110.6
		1									
Atrazine	LCS1	97.3	112.2	99.6 66.4	109.5	97.8	98.0	95.2	92.4	100.1	102.2
	HDR-1	70.1	68.3		75.0	82.0	68.3	71.3	67.0	85.5	66.3
	HDR-2 HDR-3	71.4 74.6	67.4	78.5 72.2	71.7	82.7 87.2	67.0	71.2 72.6	64.5 62.9	84.9	77.3
			73.6		69.5		65.5			91.6	82.8
	HDR-4	78.3	73.0	71.8	69.7	82.6	69.0	78.2	66.7	88.4	74.1
	HDR-5	69.4	82.9	68.7	71.6	86.4	68.5	72.6	64.5	85.0	81.7
	HDR-6	76.2	72.2	76.4	65.3	83.0	65.8	77.7	70.9	81.3	81.8
	HDR-7	67.9	74.5	77.5	65.6	87.5	66.0	75.5	61.8	84.5	74.5
	HDR-8	74.4	64.0	70.2	71.0	84.1	64.1	71.0	63.9	84.7	83.8

Working	Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days Since Spike			-	,	10	30	45	00	05	04
Compound	Sample Name										
·	HDR-9	76.3	79.2	69.1	62.4	86.0	64.1	77.3	64.7	79.7	76.2
	HDR-10	68.3	71.8	71.7	70.6	88.3	57.8	76.3	50.0	86.6	67.3
	HDR-11	73.0	66.0	68.4	41.2	86.1	61.8	65.1	60.9	87.4	77.2
	LCS2	105.9	101.3	100.9	102.2	113.7	97.1	105.9	86.8	106.1	107.1
Bendroflumethiazide - M-H	LCS1	103.7	97.3	97.7	107.3	83.7	94.2	90.2	99.3	85.0	103.9
Denaronamethaziae - Wi-fi	HDR-1	181.1	183.9	182.5	183.9	103.9	264.2	141.6	118.5	142.7	130.1
	HDR-2	182.3	186.6	189.6	173.9	101.7	281.8	130.8	112.2	142.9	115.3
	HDR-3	175.2	194.9	175.6	179.4	107.4	276.1	125.7	116.0	128.2	117.1
	HDR-4	169.4	172.0	164.1	166.3	97.3	255.3	130.7	136.1	125.4	104.0
	HDR-5	182.7	162.4	199.6	160.3	99.4	268.9	120.1	144.8	150.4	101.5
	HDR-6	164.2	169.1	173.8	170.4	108.2	256.5	129.9	114.3	135.5	115.4
	HDR-7	163.5	176.7	176.8	152.9	101.6	246.7	121.7	110.0	131.1	117.0
	HDR-8	158.7	154.5	163.1	163.0	98.2	271.6	115.1	116.6	130.3	109.9
	HDR-9	162.7	157.5	158.5	143.3	110.9	250.8	115.1	112.2	139.6	101.0
	HDR-10	148.9	159.9	177.8	163.1	97.9	254.3	126.4	77.5	143.5	109.1
	HDR-11	192.2	156.9	161.1	170.0	101.5	253.3	121.3	105.1	140.9	113.6
	LCS2	94.4	91.2	95.4	106.2	89.7	90.1	93.8	93.9	83.0	92.6
- •	LCS1	96.4	92.9	98.8	106.8	87.9	92.4	85.6	98.3	106.7	112.3
Bezafibrate	HDR-1	170.9	174.7	169.0	190.6	151.1	146.8	240.4	186.0	189.5	207.9
	HDR-2	170.9	174.7	165.9	186.1	140.2	153.6	202.2	171.3	178.4	188.5
			177.2								
	HDR-3	162.8		168.4	182.8	135.8	145.8	222.0	168.0	175.9	165.9
	HDR-4 HDR-5	162.3 182.3	161.9 167.7	150.2 179.8	188.3 170.2	122.2 133.8	133.2 150.0	200.9	189.7 215.2	169.3 191.0	174.6 186.4
	HDR-6	160.4	165.1	166.8	182.1	137.9	148.1	197.5 215.8	184.5	188.4	193.3
	HDR-7		165.6		182.1	137.9					202.6
	HDR-8	165.4		164.6			138.3	199.8	169.7	191.5	
		161.1	170.0	150.7	178.2	132.0	141.4	183.7	170.5	186.7	174.5
	HDR-9	159.3	156.5	162.0	174.6	153.3	149.4	200.9	185.3	219.8	169.7
	HDR-10	149.0	160.0	170.5	178.7	135.1	151.3	210.2	145.8	203.7	193.8
	HDR-11	184.8	157.8	147.5	159.8	145.7	141.7	197.3	160.7	183.4	182.0
	LCS2	96.0	102.6	103.5	118.7	98.0	92.1	107.1	96.6	113.7	93.0
Bisphenol A	LCS1	101.7	100.4	98.1	109.4	99.9	98.5	100.1	100.1	97.6	95.6
	HDR-1	94.7	94.9	92.2	102.7	90.8	75.0	97.6	98.1	101.5	96.0
	HDR-2	95.8	94.4	95.0	100.7	88.7	72.0	96.9	101.9	99.0	94.2
	HDR-3	96.8	97.6	96.9	101.5	94.7	71.1	97.6	98.8	96.3	91.0
	HDR-4	101.0	94.1	92.2	97.4	86.0	70.4	92.3	95.5	91.7	85.5
	HDR-5	95.1	92.5	96.8	100.8	90.1	77.8	98.1	106.5	99.4	92.9
	HDR-6	99.9	96.5	91.8	95.5	87.4	74.4	103.4	98.9	101.0	97.2
	HDR-7	132.9	94.6	100.0	100.1	89.2	70.1	97.9	94.4	103.4	94.9
	HDR-8	99.6	95.5	98.6	97.8	80.6	65.5	91.3	93.8	92.9	95.9
	HDR-9	99.0	93.1	93.7	93.0	97.1	75.2	95.0	98.7	100.1	90.6
	HDR-10	101.6	89.6	98.6	99.4	90.4	75.4	100.6	168.2	96.6	92.3
	HDR-11	102.8	97.7	91.2	78.5	92.8	73.7	97.9	93.1	98.2	96.5
	LCS2	101.0	102.2	103.3	106.1	101.4	98.2	101.0	99.9	95.9	96.0
Bromacil	LCS1	99.4	92.0	94.8	101.9	88.7	92.7	101.0	83.9	91.7	98.1
	HDR-1	132.7	140.0	137.0	151.8	124.0	143.8	178.7	119.8	143.2	157.1
	HDR-2	138.5	136.6	149.0	143.7	102.1	135.4	176.3	118.9	131.2	133.6
	HDR-3	138.4	124.5	133.8	131.6	105.1	122.5	162.5	106.8	131.6	173.9
	HDR-4	130.1	111.5	127.6	156.2	104.4	130.8	159.4	114.8	130.8	134.3

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days since spike			-	,	10	30	43	33	03	04
Compound	Sample Name										
	HDR-5	135.0	129.7	146.3	145.5	109.1	138.2	162.5	140.2	147.3	132.4
	HDR-6	132.8	123.4	134.4	149.6	120.1	127.2	160.8	105.3	117.3	137.8
	HDR-7	128.7	140.4	130.5	156.7	99.1	122.7	164.9	101.2	126.7	129.5
	HDR-8	127.4	144.0	145.1	148.7	108.0	131.2	146.8	103.2	150.4	139.9
	HDR-9	136.6	133.8	132.0	140.4	121.4	130.5	161.4	117.5	136.9	133.9
	HDR-10	110.9	123.4	135.0	157.6	122.6	128.1	171.8	172.1	120.3	139.8
	HDR-11	149.8	120.3	115.4	113.2	108.6	130.1	154.5	103.0	131.9	153.1
	LCS2	97.2	97.1	98.2	98.7	85.5	92.3	104.2	92.7	93.5	101.0
Clofibric acid	LCS1	105.0	101.1	98.2	99.7	97.7	99.7	94.9	95.7	132.8	92.8
0.0	HDR-1	132.1	133.6	126.7	141.3	127.6	108.2	137.0	111.6	131.9	134.4
	HDR-2	126.0	140.2	122.9	129.0	114.3	100.6	129.2	103.0	81.3	131.9
	HDR-3	140.9	138.6	123.5	130.5	110.9	95.7	120.3	106.2	114.1	122.1
	HDR-4	122.1	132.3	126.8	135.1	121.2	100.8	120.8	96.6	91.8	122.4
	HDR-5	132.1	140.4	129.7	131.0	115.4	108.3	127.7	114.1	114.7	132.8
	HDR-6	130.8	135.5	129.7	132.8	123.3	105.9	128.5	102.0	130.3	126.3
	HDR-7	131.3	125.1	125.1	135.9	137.9	97.6	131.7	106.9	104.7	114.7
	HDR-8	132.0	126.8	125.1	128.9	130.5	94.2	123.1	94.3	145.2	116.1
	HDR-9	133.2	139.9	124.9	130.1	135.7	105.1	123.0	99.0	135.5	115.8
	HDR-10	137.3	138.2	118.2	127.9	128.5	101.1	123.1	100.8	125.4	133.5
	HDR-11	131.1	129.6	119.0	123.5	121.8	102.0	129.4	100.1	133.4	124.1
	LCS2	102.2	100.0	94.6	93.8	99.4	98.7	103.6	107.8	115.1	107.7
Butalbital	LCS1	100.4	99.2	103.3	111.9	85.6	93.0	91.5	90.6	94.9	88.7
Dutaibitai	HDR-1	118.7	121.3	114.3	149.6	135.4	120.6	139.1	117.6	154.4	154.8
	HDR-2	99.9	123.3	120.1	126.3	118.5	111.1	138.7	117.3	160.2	134.9
	HDR-3	108.2	107.0	107.0	136.8	117.7	107.4	126.6	124.9	132.8	132.8
	HDR-4	101.3	96.5	105.4	133.8	124.3	113.1	118.8	130.5	145.0	131.2
	HDR-5	101.7	118.7	121.3	125.9	123.9	108.3	114.4	160.6	129.6	146.9
	HDR-6	94.6	116.0	117.5	132.5	125.8	111.3	113.1	122.8	124.3	151.7
	HDR-7	115.8	119.1	111.7	126.5	117.0	110.9	124.7	109.2	143.6	132.8
	HDR-8	107.6	111.3	115.3	143.7	110.3	107.8	107.2	115.3	126.6	137.1
	HDR-9	108.4	125.9	106.8	127.7	112.6	117.0	115.0	109.8	151.1	128.1
	HDR-10	94.5	100.9	129.2	124.4	121.0	119.8	129.1	246.4	145.1	132.6
	HDR-11	115.5	110.5	109.6	156.1	120.0	113.0	119.4	113.2	141.0	126.1
	LCS2	92.9	103.2	98.6	105.3	96.2	90.6	88.9	94.7	90.2	90.3
Butulnarahan NEC	LCS1	98.2	94.8	101.5	96.5	88.9	96.0	93.8	99.6	124.3	96.4
Butylparaben-NEG	HDR-1	100.0	101.5	100.2	104.9	92.6	105.3	129.3	107.7	151.3	119.1
	HDR-2	90.9	96.4	95.6	102.1	89.2	96.0	126.1	107.0	110.2	118.3
	HDR-3	97.9	96.3	92.2	100.1	89.1	97.9	122.7	108.2	140.0	118.8
	HDR-4	97.4	100.4	96.8	100.5	87.1	95.0	120.2	100.6	127.7	105.3
	HDR-5	94.7	100.3	100.8	99.8	88.9	102.1	115.7	110.8	141.2	113.2
	HDR-6	99.2	98.5	98.8	97.2	94.1	98.9	125.0	108.6	163.0	118.5
	HDR-7	94.7	103.2	98.5	98.3	95.3	97.6	118.3	108.5	143.4	116.9
	HDR-8	102.3	92.6	96.4	100.7	94.3	91.7	118.2	107.8	143.9	113.5
	HDR-9	96.6	96.6	95.7	101.7	95.7	104.5	121.4	110.3	165.8	115.4
	HDR-10	92.8	92.4	98.7	96.3	95.5	96.1	115.5	99.0	165.9	119.9
	HDR-11	95.5	100.0	92.6	77.0	91.8	94.6	118.1	104.5	153.8	112.8
	LCS2	95.8	91.6	87.1	97.6	95.1	84.7	103.1	113.9	120.3	94.6
Caffeine	LCS1	99.6	98.1	99.3	114.8	104.3	99.9	103.2	92.4	102.3	101.6

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Since Spike	U	2	4	,	10	30	45	80	09	04
Compound	Sample Name										
	HDR-1	81.3	111.6	107.4	92.5	69.6	93.0	187.8	117.1	108.4	86.8
	HDR-2	80.7	105.6	99.9	102.4	120.4	68.4	117.1	84.8	102.1	137.4
	HDR-3	77.0	95.5	112.1	40.4	164.3	92.7	122.1	107.0	137.2	198.3
	HDR-4	92.4	114.5	80.5	102.6	97.0	72.2	115.3	103.5	127.8	101.3
	HDR-5	112.7	132.8	158.9	116.4	83.2	114.7	49.9	122.1	134.2	69.3
	HDR-6	143.8	111.3	107.1	115.6	135.2	90.1	105.8	107.5	74.9	109.5
	HDR-7	66.0	111.1	91.6	98.8	76.5	63.8	59.0	107.1	98.3	103.3
	HDR-8	130.6	183.9	108.5	136.5	42.3	71.8	102.5	129.2	133.7	89.4
	HDR-9	102.0	99.8	107.9	95.1	81.3	155.5	72.7	89.7	99.4	69.7
	HDR-10	97.1	72.9	123.1	126.0	98.6	81.2	123.5	274.4	115.5	148.4
	HDR-11	107.6	73.0	115.7	67.4	110.6	133.1	103.8	86.1	102.5	108.9
	LCS2	106.5	100.8	104.7	115.6	112.1	101.3	104.8	96.4	105.6	108.1
	LCS1	109.5	91.6	100.0	107.6	87.8	73.5	101.0	99.3	141.8	95.2
Carbadox	HDR-1	93.0	117.6	90.7	114.3	102.1	98.9	105.9	115.8	131.2	117.6
	HDR-2	92.8	88.3	114.0	114.2	115.5	66.5	121.4	108.4	85.6	160.7
	HDR-3	102.9	97.8	112.1	114.2	101.0	88.8	102.6	101.8	111.0	121.2
	HDR-4	110.2	99.3	112.1	88.8	99.6	100.7	109.9	124.7	111.0	163.2
	HDR-5	110.2	98.8	113.0	105.7	105.5	100.7	104.1	149.7	127.4	114.2
		+									
	HDR-6	114.2	92.4	83.9	86.1	117.3	66.8	119.3	130.7	120.8	156.5
	HDR-7	100.5	103.8	100.6	104.3	101.2	77.1	117.9	138.6	105.8	136.8
	HDR-8	112.2	110.0	86.7	100.0	95.3	85.0	126.0	111.4	101.2	114.2
	HDR-9	110.5	104.9	112.3	89.0	115.8	97.6	124.3	133.1	147.3	117.6
	HDR-10	105.5	116.8	104.6	103.5	111.9	76.0	97.1	112.6	166.3	112.4
	HDR-11	128.1	116.5	109.1	66.0	109.2	68.5	88.6	112.7	115.8	117.2
	LCS2	101.0	93.7	99.5	102.8	96.2	94.3	95.0	109.9	112.9	96.1
Carbamazepine	LCS1	96.5	95.1	105.9	112.5	103.4	93.9	100.4	96.6	105.8	90.1
	HDR-1	124.2	132.1	118.9	133.8	114.2	96.4	119.3	116.9	133.2	137.5
	HDR-2	124.0	134.5	128.9	134.5	118.1	96.0	124.5	120.5	138.6	134.4
	HDR-3	135.4	125.1	125.1	134.8	119.2	91.1	116.8	131.7	128.7	135.8
	HDR-4	129.6	127.4	125.2	125.7	113.8	92.9	123.2	128.2	132.9	133.1
	HDR-5	124.2	125.4	123.0	137.9	113.8	101.0	119.3	130.1	140.4	124.1
	HDR-6	129.4	124.6	132.1	131.6	123.2	99.0	129.7	126.5	136.5	131.2
	HDR-7	134.3	126.6	135.4	134.6	122.2	97.5	113.7	121.7	124.5	125.4
	HDR-8	125.5	124.5	131.5	130.8	114.6	89.4	114.9	117.2	128.7	119.2
	HDR-9	133.2	127.8	124.8	129.1	129.6	101.9	118.1	122.6	141.6	122.3
	HDR-10	128.9	122.0	127.8	141.5	131.3	91.4	120.5	135.4	132.0	128.7
	HDR-11	135.2	123.8	137.2	102.9	132.3	99.3	126.4	117.2	125.4	122.8
	LCS2	103.8	98.1	99.8	102.6	105.8	98.8	97.9	85.1	99.2	94.5
Carisoprodol	LCS1	98.6	101.6	107.3	117.7	103.0	106.5	81.2	100.3	98.6	127.6
•	HDR-1	108.5	117.9	147.8	141.5	117.8	129.4	334.8	107.9	138.6	167.6
	HDR-2	113.8	111.0	168.6	134.9	95.6	144.8	156.6	85.0	123.0	183.1
	HDR-3	102.8	121.0	139.3	134.6	93.0	116.1	268.0	91.1	143.7	200.1
	HDR-4	113.5	116.4	126.7	142.6	115.5	99.9	163.5	81.3	141.4	165.1
	HDR-5	151.3	163.0	200.6	156.5	129.7	602.9	88.0	95.2	164.7	126.1
	HDR-6	137.3	124.0	128.2	114.5	89.4	105.8	209.9	92.9	121.1	146.7
	HDR-7	91.7	128.5	119.1	116.3	92.9	141.4	140.1	99.5	129.6	138.5
	HDR-8	111.8	169.5	107.9	165.8	97.1	95.8	156.7	95.8	143.7	130.5
	HDR-9	127.1	104.4	105.1	105.3	99.1	352.6	138.6	94.7	157.1	124.3

w	orking Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
••	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days Since Spike			7	,	10	30	45	00	05	- 04
Compound	Sample Name										
•	HDR-10	95.6	123.1	174.6	145.1	78.6	97.3	208.4	190.7	171.0	141.6
	HDR-11	112.2	107.0	128.6	210.1	111.8	144.3	174.6	67.5	148.0	138.5
	LCS2	94.5	79.6	91.1	80.3	110.8	85.9	75.6	97.7	79.8	77.7
Chloramphenicol_M-H	LCS1	99.8	103.5	89.5	108.2	92.2	101.0	103.5	104.7	128.3	103.5
Cilioramphenicoi_wi-ri	HDR-1	98.2	116.6	103.1	114.7	125.4	94.6	106.9	74.4	106.7	113.4
	HDR-2	109.1	102.9	89.1	101.5	95.6	89.8	99.8	82.9	74.5	109.1
	HDR-3	105.7	105.6	99.3	104.6	101.3	79.2	103.2	75.8	97.6	107.3
	HDR-4	97.9	97.4	105.3	102.3	108.3	77.9	84.8	75.0	82.2	91.6
	HDR-5	112.2	101.7	107.5	104.8	98.4	95.4	101.3	76.2	96.1	104.0
	HDR-6	106.2	101.4	97.5	96.2	110.1	87.1	109.3	83.3	107.2	90.1
	HDR-7	113.3	103.4	83.1	100.3	105.7	84.0	111.4	82.4	93.4	89.0
	HDR-8	108.0	98.8	98.8	107.6	114.5	78.5	97.8	71.9	102.7	85.9
	HDR-9	98.7	107.0	101.7	99.6	103.7	91.2	102.2	79.2	109.6	102.4
	HDR-10	91.3	98.1	87.5	107.5	113.6	90.7	103.5	76.2	105.0	91.8
	HDR-11	107.3	96.4	101.7	79.1	96.0	77.1	112.3	74.4	106.4	91.8
	LCS2	82.0	91.7	82.6	83.3	100.7	93.8	102.1	110.9	118.3	89.0
	LCS1	101.7	98.9		106.5	88.7		1			108.0
Chloridazon				102.7			94.8	94.2	88.4	97.1	
	HDR-1	96.8	87.5	79.4	100.4	95.6	83.3	127.4	81.6	110.5	114.6
	HDR-2	102.8	79.5	90.9	104.9	76.4	101.4	130.3	95.2	131.3	129.2
	HDR-3	82.3	93.3	84.8	83.2	77.5	88.0	122.2	96.0	114.1	106.3
	HDR-4	76.0	70.7	88.7	90.2	69.9	77.8	106.6	104.2	124.7	132.4
	HDR-5	77.9	73.9	88.0	94.8	75.3	77.1	110.1	106.4	110.3	104.6
	HDR-6	74.8	89.3	95.2	90.8	76.4	84.9	109.4	78.3	125.6	129.7
	HDR-7	85.5	76.0	82.4	88.3	3.0	81.9	108.0	91.8	127.8	138.0
	HDR-8	79.4	84.5	101.8	104.0	76.1	85.6	101.6	92.2	104.9	157.6
	HDR-9	75.6	77.7	81.4	81.1	89.5	89.8	91.6	91.5	111.2	139.0
	HDR-10	76.4	70.2	113.2	94.4	81.6	96.4	105.7	77.4	126.2	147.4
	HDR-11	75.7	77.3	100.8	79.7	75.0	85.0	108.5	88.7	116.1	141.2
	LCS2	92.9	99.5	101.0	98.4	85.6	94.4	102.2	89.5	96.7	116.9
Chlorotoluron	LCS1	105.7	97.3	95.2	108.5	84.7	94.4	92.6	99.4	92.3	107.8
	HDR-1	99.9	102.8	105.1	115.7	100.7	110.8	155.8	125.1	155.3	160.9
	HDR-2	104.7	98.5	106.9	112.7	97.3	109.2	144.8	123.5	150.4	149.8
	HDR-3	104.4	101.7	99.1	106.6	96.8	100.5	147.9	116.5	131.9	141.5
	HDR-4	102.1	87.9	96.1	103.2	93.5	97.0	147.6	129.6	131.9	131.7
	HDR-5	96.3	92.1	109.6	106.8	95.1	101.9	134.5	146.8	149.6	128.9
	HDR-6	91.1	93.5	99.9	109.5	94.0	101.0	145.5	120.9	143.5	135.2
	HDR-7	97.9	95.4	100.0	106.5	90.8	95.8	134.2	116.1	133.7	140.7
	HDR-8	91.8	92.0	97.1	106.4	87.7	105.6	127.9	116.3	135.9	136.6
	HDR-9	97.6	94.3	95.6	94.6	103.9	107.5	137.4	121.1	149.3	127.6
	HDR-10	90.9	88.9	104.1	108.8	94.3	96.3	144.6	107.3	157.8	136.1
	HDR-11	110.1	89.8	96.1	79.0	98.9	98.1	143.4	115.0	143.2	140.3
	LCS2	112.0	99.0	103.4	113.5	91.6	91.5	105.8	102.0	88.7	101.3
Cimetidine - PRM	LCS1	119.0	109.2	105.7	99.2	79.3		103.7	103.5	120.3	104.2
Carredonic Filiti	HDR-1	38.1	54.9	38.9	109.5	27.1		12.9		30.9	9.6
	HDR-2	43.1	49.2	34.0	109.6	21.4		13.9		28.3	15.9
	HDR-3	38.1	50.7	37.9	101.7	15.9		12.6		23.8	14.0
	HDR-4	43.1	62.3	35.2	120.6	10.2		18.0		29.8	18.1
	HDR-5	38.8	49.5	34.8	121.1	18.4		19.5		37.9	20.0

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days Since Spike			-	,	10	30		00	05	04
Compound	Sample Name										
-	HDR-6	43.9	53.7	34.6	99.9	15.7		16.0		32.1	15.3
	HDR-7	38.2	52.7	34.1	101.4	16.9		20.3		40.7	11.8
	HDR-8	39.4	54.7	25.8	103.7	15.7		17.7		38.4	16.5
	HDR-9	38.6	53.7	27.8	110.5	24.4		19.2		37.6	15.2
	HDR-10	31.8	52.0	33.6	111.1	13.1		27.4		40.1	9.5
	HDR-11	38.0	48.9	32.6	101.4	29.1		11.9		47.7	14.0
	LCS2	96.7	111.8	96.7	68.7	103.9		82.7	104.4	99.8	93.2
Cotinine - PRM	LCS1	94.7	99.2	106.4	115.5	101.7	91.9	100.7	98.6	103.4	89.6
Cotiline Titivi	HDR-1	95.0	115.8	114.7	98.7	110.0	69.2	100.9	113.8	112.5	124.3
	HDR-2	110.6	107.1	118.0	93.0	83.7	70.2	93.9	111.2	112.6	122.8
	HDR-3	113.7	116.9	118.7	99.1	99.2	88.5	100.6	109.1	104.8	108.1
	HDR-4	118.5	116.0	123.2	96.5	99.9	79.8	97.4	91.7	109.1	131.3
	HDR-5	120.2	118.6	138.6	99.2	102.9	76.6	80.5	121.7	115.4	142.9
	HDR-6	113.5	116.3	136.8	99.2	95.9	104.0	103.0	100.5	118.6	96.6
	HDR-7	106.6	108.4	123.4	88.4	107.7	100.3	101.9	106.5	103.4	123.2
	HDR-8	123.5	123.8	151.9	98.3	101.9	74.5	89.1	109.2	108.8	132.6
	HDR-9	116.5	120.1	N/F	111.8	91.4	86.0	108.4	120.8	131.8	116.4
	HDR-10	104.3	103.2	123.9	88.5	114.9	90.9	95.2	182.9	118.8	127.4
	HDR-11	123.5	120.3	127.1	90.1	97.9	92.2	99.6	117.4	131.5	131.0
	LCS2	90.3	98.5	105.9	104.3	96.3	89.6	94.7	93.7	97.0	81.9
Cyanazine	LCS1	99.0	98.7	100.5	109.5	101.4	101.2	96.9	102.6	98.9	97.7
Cyanazine	HDR-1	72.3	77.1	75.2	73.0	70.0	70.0	64.4	-35.1	70.8	70.7
	HDR-2	74.0	73.3	75.2	77.3	79.2	62.8	68.1	54.9	65.5	65.1
	HDR-3	81.4	75.5	76.2	73.0	74.4	59.7	70.2	62.0	66.6	71.8
	HDR-4	70.6	72.4	76.1	70.8	-37.9	60.8	74.3	58.7	64.2	66.9
	HDR-5	74.2	76.4	77.2	78.9	74.8	66.1	69.9	63.3	72.1	71.4
	HDR-6	72.1	78.9	71.8	70.4	73.6	65.1	75.5	55.8	78.3	64.3
	HDR-7	78.7	79.3	71.5	78.8	74.7	69.0	75.3	60.5	66.7	65.2
	HDR-8	74.2	74.1	74.1	74.6	-38.0	63.2	66.6	54.1	74.3	67.8
	HDR-9	74.6	72.2	77.4	68.0	77.8	64.6	69.9	59.3	71.0	69.0
	HDR-10	69.9	75.9	71.8	72.2	74.4	61.5	75.4	61.4	73.9	70.3
	HDR-11	70.8	76.7	69.0	61.6	77.2	61.3	69.0	58.7	74.3	61.7
	LCS2	94.9	99.0	98.7	104.7	99.2	95.2	103.0	92.7	98.4	105.6
DACT	LCS1	104.0	104.4	98.5	110.8	87.8	99.3	107.2	99.1	97.9	115.7
27.01	HDR-1	181.1	199.1	248.2	152.5	186.2	182.9	251.8	224.6	188.9	214.6
	HDR-2	179.2	164.7	227.4	239.2	144.4	187.9	190.1	263.3	153.7	211.9
	HDR-3	133.1	196.9	202.3	186.0	162.0	173.5	234.9	310.3	150.1	229.2
	HDR-4	198.7	120.2	197.1	157.6	156.3	160.8	154.2	330.7	145.4	174.7
	HDR-5	215.1	157.4	224.0	183.4	184.9	212.6	230.1	162.1	125.4	202.3
	HDR-6	153.4	111.0	162.7	158.7	155.5	168.5	205.3	126.6	126.4	164.2
	HDR-7	154.1	123.2	234.6	158.2	136.1	181.1	202.1	170.9	143.2	184.8
	HDR-8	161.8	187.0	241.1	182.1	121.8	183.3	151.9	201.9	139.6	167.9
	HDR-9	213.3	148.2	178.2	184.4	164.9	165.2	161.0	226.7	124.7	202.3
	HDR-10	181.3	125.6	156.7	120.6	150.2	253.2	178.5	173.0	143.1	231.9
	HDR-11	200.0	187.8	216.1	191.2	175.9	167.3	211.8	177.9	131.2	207.1
	LCS2	89.0	83.9	89.3	91.3	96.0	92.7	82.8	97.0	72.9	74.3
DEA	LCS1	100.2	105.9	104.2	107.8	96.5	97.8	96.2	102.0	96.6	109.8
	HDR-1	86.4	93.6	77.3	88.9	72.3	75.6	88.8	49.4	98.0	258.5

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	22,000			-	-						
Compound	Sample Name										
·	HDR-2	64.7	97.7	91.9	100.3	84.6	72.5	110.1	40.8	103.8	140.9
	HDR-3	94.7	85.7	97.9	106.9	44.9	47.5	81.8	70.8	95.2	134.9
	HDR-4	99.9	99.3	117.0	152.8	64.8	90.0	83.0	50.1	83.9	121.9
	HDR-5	103.2	89.3	88.7	148.6	98.6	61.9	107.6	75.0	84.7	84.8
	HDR-6	73.6	56.6	109.6	82.1	82.5	68.6	121.3	74.2	99.8	118.6
	HDR-7	105.7	84.9	80.3	80.6	79.7	50.1	110.8	100.7	105.6	115.4
	HDR-8	88.6	67.6	99.9	141.6	76.4	57.3	116.6	61.1	86.2	107.4
	HDR-9	118.9	105.6	109.7	94.3	88.3	64.3	93.0	55.5	113.8	122.9
	HDR-10	69.8	85.4	100.7	109.2	55.8	68.5	122.8	84.9	81.9	105.8
	HDR-11	115.2	110.5	94.9	70.9	54.5	56.5	76.8	76.7	106.2	134.9
	LCS2	98.7	106.1	103.1	101.2	95.5	93.2	106.9	95.4	97.1	109.7
DEET	LCS1	104.6	109.6	103.8	110.2	93.8	96.1	93.0	88.0	94.8	100.2
DEET	HDR-1	81.6	80.8	81.2	88.4	91.7	77.6	90.8	84.0	75.6	85.0
	HDR-2	78.9	88.5	88.9	96.7	84.6	84.4	98.6	76.7	84.0	89.9
	HDR-3	80.7	82.9	83.8	83.6	84.7	67.7	98.6	79.0	81.4	82.3
	HDR-4	79.1	70.4	75.5	86.0	80.8	74.6	92.5	95.4	80.5	80.8
	HDR-5	82.9	77.1	82.6	90.4	86.5	76.1	86.7	105.2	87.3	79.4
	HDR-6	76.1	82.2	85.9	84.2	84.4	78.4	96.0	77.0	78.3	92.2
	HDR-7	85.1	82.7	87.7	85.3	80.0	76.1	96.0	82.9	84.2	86.3
	HDR-8	78.7	78.3	84.9	89.0	82.7	77.7	76.8	81.2	77.0	81.7
	HDR-9	81.7	78.4	79.7	79.2	89.6	83.7	84.7	88.4	82.7	84.0
	HDR-10	72.4	73.2	82.1	86.7	86.3	76.3	94.4	89.1	87.2	81.0
	HDR-11	90.1	78.0	82.1	79.1	83.3	75.6	91.7	80.3	74.0	84.5
	LCS2	95.1	94.8	98.4	100.3	96.6	90.7	91.8	87.3	86.1	91.3
_	1.664	107.2		96.4		96.9	96.9				96.4
Dehydronifedipine	HDR-1	82.3	94.0 76.0	69.6	110.1 80.3	70.4	72.6	114.0 78.4	100.1 68.1	100.2 89.3	88.0
	HDR-2	89.6	83.4	87.4	81.9	75.6	74.0	75.7	71.7	83.8	93.6
	HDR-3	94.9	76.7			77.7	69.6			87.5	93.6
				73.9 77.7	85.8			73.6	82.1		
	HDR-4	90.0	88.0		84.5	72.8	73.5	73.6	78.7	89.2	84.9
	HDR-5	83.8	73.5	83.0	89.7	76.8	79.0	75.2	77.9 76.9	105.0	91.0
	HDR-6	94.9	81.7	86.6	79.3	83.8	76.1	84.8		93.0	91.0
	HDR-7	95.9	87.5	84.7	82.6	82.1	69.2	81.5	75.9	90.8	91.9
	HDR-8	85.2	75.1	72.2	79.6	76.5	65.3	76.3	73.0	91.8	85.4
	HDR-9	90.4	83.9	81.8	78.1	89.1	75.7	73.1	72.9	100.1	91.4
	HDR-10	90.6	77.8	77.8	82.7	89.7	68.3	86.5	81.5	100.1	97.8
	HDR-11	90.2	79.8	84.2	69.3	89.7	74.4	76.1	70.5	95.8	91.6
	LCS2	122.8	100.9	107.1	109.7	110.4	108.3	107.4	94.8	105.9	107.2
DIA	LCS1	100.1	101.2	101.3	109.2	98.9	101.9	99.5	102.5	95.7	98.8
	HDR-1	81.2	101.6	89.0	65.3	86.9	87.2	102.8	69.5	103.3	118.4
	HDR-2	108.3	107.3	101.1	86.1	74.2	87.0	106.7	96.1	100.2	88.4
	HDR-3	97.3	92.9	71.1	101.3	86.9	76.4	94.8	89.5	98.8	108.6
	HDR-4	92.5	84.1	70.3	123.5	77.5	85.5	103.2	84.6	94.8	81.7
	HDR-5	77.0	94.7	84.1	83.9	105.2	62.2	94.7	87.0	92.0	78.4
	HDR-6	80.2	87.5	82.2	101.9	66.6	70.9	106.2	107.4	113.5	87.6
	HDR-7	77.0	95.3	97.6	84.9	81.6	88.6	91.1	98.4	95.7	111.9
	HDR-8	74.6	76.2	84.9	67.6	72.9	85.3	102.8	89.0	92.2	86.1
	HDR-9	71.9	88.9	96.8	96.3	82.1	65.7	106.9	90.2	109.0	89.8
	HDR-10	71.5	92.6	80.5	81.9	73.0	69.2	106.9	97.2	103.9	93.1

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days since spike			-	,	10	30	43		03	
Compound	Sample Name										
	HDR-11	93.4	81.9	89.2	60.3	93.4	77.4	77.0	66.2	78.3	119.4
	LCS2	94.3	103.1	103.0	101.5	99.8	102.1	100.6	103.5	93.8	96.5
Diazepam	LCS1	99.5	102.3	100.8	111.5	92.8	98.1	96.9	98.9	99.6	105.1
Биагерант	HDR-1	85.1	89.5	79.8	88.5	85.4	85.3	98.4	91.2	112.8	115.8
	HDR-2	87.7	91.9	92.2	89.7	86.7	86.8	88.7	91.4	106.3	115.7
	HDR-3	91.5	91.2	87.4	98.0	85.6	77.8	89.8	94.9	105.1	113.1
	HDR-4	86.0	89.2	81.4	86.4	74.4	75.3	86.9	94.4	98.2	105.8
	HDR-5	87.7	88.4	87.0	92.2	82.9	85.0	93.8	113.0	109.0	115.1
	HDR-6	82.6	87.0	87.3	89.8	86.4	84.4	94.4	89.5	105.5	117.4
	HDR-7	88.9	91.3	95.7	92.8	85.4	86.8	90.8	89.1	103.1	118.9
	HDR-8	87.0	89.6	89.3	92.9	77.6	77.5	85.9	85.7	98.7	109.7
	HDR-9	87.5	87.4	85.5	82.9	87.9	86.9	88.4	96.5	115.6	109.0
	HDR-10	82.5	88.5	89.9	91.3	83.3	84.6	95.7	86.8	114.0	115.5
	HDR-11	93.0	91.2	85.9	77.0	86.4	83.2	91.5	88.8	109.1	119.9
	LCS2	101.4	106.5	102.1	107.0	97.1	99.1	95.0	105.3	94.7	108.5
D: 1 (MAII	LCS1	98.5	98.1	98.7	104.8	92.2	97.7	100.1	108.2	137.3	105.6
Diclofenac- M-H	HDR-1	103.0	112.7	114.9	110.7	108.2	83.7	130.3	95.3	144.3	114.5
	HDR-2	97.0	96.7	106.1	96.7	86.4	79.7	113.4	100.7	99.1	112.3
	HDR-3	94.4	95.4	98.7	104.7	85.7	77.0	106.1	100.9	128.0	100.9
	HDR-4	94.2	103.5	101.5	111.7	90.6	73.2	100.3	102.5	98.1	107.1
	HDR-5	95.5	101.1	101.2	100.3	89.4	81.9	99.5	106.8	129.3	107.1
	HDR-6	96.5	100.8	98.6	106.2	96.8	79.1	110.2	104.7	137.7	106.8
	HDR-7	99.1	97.1	96.2	100.2	95.5	74.7	101.5	105.1	124.9	101.2
	HDR-8	99.1	99.3	100.1	99.0	98.1	68.1	99.2	105.4	132.1	97.2
	HDR-9	93.5	99.3	98.2	103.0	100.3	82.4	102.5	105.8	137.3	89.6
	HDR-10	95.0	93.7	97.1	95.5	94.9	72.9	101.6	100.1	136.9	109.0
	HDR-11	92.2	94.5	91.5	87.6	92.5	76.1	98.0	103.2	133.2	100.3
	LCS2	97.2	96.1	97.9	101.8	98.4	100.3	104.2	104.7	139.1	105.4
Dilantin - M-H	LCS1	82.5	95.1	87.8	104.5	79.0	81.1	95.1	102.5	97.2	97.9
	HDR-1 HDR-2	78.7 89.8	89.2 90.4	75.5 92.7	82.5 96.4	96.5 99.3	78.3 81.1	100.1 88.1	96.5 77.9	115.1 110.2	91.5 101.2
	HDR-3	104.0	85.3	81.6	107.5	101.8	82.3	87.5	86.8	132.0	116.6
	HDR-4		96.5	85.1	107.5	97.1	86.3		102.2	122.9	
	HDR-5	94.3 95.8	92.9	94.7		103.6	84.4	102.4			101.6
	HDR-6	99.8	96.2	98.3	102.6 97.3	117.2	79.3	101.0	94.1 96.8	142.8 167.7	108.9
								115.3			102.8
	HDR-7	94.8	96.5	89.7	107.1	114.2	82.0	110.4	98.4	133.0	106.1
	HDR-8	93.8	82.7	89.2	104.6	103.4	72.3	119.4	93.1	137.4	113.0
	HDR-9 HDR-10	104.4	89.0	89.6	91.6 97.3	122.7	83.5	98.2	96.6	121.3	110.0 102.3
		104.3	84.0	92.5		115.0	84.3	126.7	95.1	142.7	92.8
	HDR-11 LCS2	96.7	95.6	95.6 77.1	72.0	128.5 69.9	88.7 68.9	107.7 98.7	85.3 82.3	125.8	92.8
		75.8	81.1	1	86.8			l .		80.9	
Diltiazem	LCS1	107.8	84.2	106.9	106.4	92.9	96.7	92.4	88.9	95.3	112.7
	HDR-1	181.7	192.9	200.3	236.1	148.5	184.1	179.2	119.1	134.8	134.8
	HDR-2	191.6	230.3	211.3	240.4	135.6	180.5	185.4	119.0	135.8	131.8
	HDR-3	181.4	206.5	207.3	229.3	124.7	174.6	165.1	119.9	127.2	123.7
	HDR-4	176.9	183.2	189.6	229.7	121.4	161.5	146.6	118.9	121.9	114.0
	HDR-5	183.7	211.1	203.7	226.8	128.4	190.1	154.3	151.3	139.7	125.3
	HDR-6	166.7	205.2	207.0	230.0	124.7	190.6	166.0	118.3	128.1	134.1

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Since Spike	0	2	4	,	10	30	43	00	03	04
Compound	Sample Name										
	HDR-7	179.8	202.0	201.0	235.8	117.5	169.0	172.2	117.6	141.5	131.0
	HDR-8	173.7	200.2	207.9	242.1	114.4	169.2	143.8	105.6	124.4	119.8
	HDR-9	183.8	194.6	199.2	218.3	132.3	194.9	159.9	120.8	169.4	118.3
	HDR-10	162.2	188.1	224.7	228.2	134.6	191.1	163.8	134.6	144.5	122.7
	HDR-11	195.5	194.9	212.6	206.7	134.9	178.8	166.9	112.2	140.6	130.0
	LCS2	108.0	94.0	103.5	117.2	103.2	94.2	94.2	101.6	94.5	107.3
Diuron	LCS1	111.4	100.0	100.1	105.7	92.0	98.1	97.6	101.5	127.1	98.1
Diuron	HDR-1	93.0	98.9	88.2	94.8	91.4	88.1	97.2	101.4	123.1	103.3
	HDR-2	95.1	98.7	86.6	90.6	82.9	85.1	100.6	100.1	92.1	96.3
	HDR-3	94.2	95.0	88.9	91.2	82.8	85.4	95.6	104.5	126.2	99.8
	HDR-4	92.8	97.5	87.8	91.0	83.2	86.5	96.0	103.1	102.9	95.9
	HDR-5	94.2	101.4	91.7	92.6	87.1	88.3	103.8	104.0	114.8	101.5
	HDR-6	98.7	96.2	94.9	90.3	92.6	88.9	106.4	105.8	129.8	97.3
	HDR-7	95.1	98.6	94.1	88.1	90.1	83.2	101.8	104.7	120.4	94.2
	HDR-8	95.7	94.5	84.8	89.2	87.7	84.0	99.2	101.9	128.1	104.6
	HDR-9	96.9	99.1	90.1	88.1	93.1	86.5	104.3	107.7	131.6	93.0
	HDR-10	90.7	93.7	86.0	89.6	93.4	83.1	97.4	92.2	132.1	106.0
	HDR-11	96.1	89.7	83.7	75.9	90.4	89.3	101.3	107.5	122.2	94.4
	LCS2	100.9	100.8	91.5	105.7	95.5	97.3	99.0	111.6	123.3	99.2
		1		1							
Erythromycin	LCS1	97.7	78.4	99.4	91.0	104.0	95.4	82.8	95.0	120.4	108.5
	HDR-1	116.7	158.9	135.5	170.9	85.0	209.1	144.0	85.9	103.9	87.6
	HDR-2	96.9	162.2	127.2	148.3	73.8	207.4	148.4	89.0	80.3	83.5
	HDR-3	120.1	162.9	130.6	156.6	70.3	196.6	146.1	97.3	101.1	85.9
	HDR-4	118.8	173.1	149.5	161.5	71.0	189.1	145.0	88.6	73.9	74.6
	HDR-5	115.2	163.6	142.3	159.8	74.7	199.4	147.0	100.0	102.0	80.9
	HDR-6	101.5	181.1	133.1	169.4	81.3	214.5	163.4	101.1	113.6	78.1
	HDR-7	112.7	189.6	144.8	180.5	78.0	209.9	132.8	102.3	98.5	84.8
	HDR-8	112.1	164.4	146.0	180.7	78.1	195.0	130.1	93.5	102.2	66.4
	HDR-9	112.7	190.6	188.3	175.7	85.6	217.8	145.5	94.3	124.2	89.1
	HDR-10	101.9	169.3	156.8	156.6	87.4	197.5	146.2	96.0	117.8	88.6
	HDR-11	104.2	169.1	162.8	119.9	77.9	199.3	144.5	111.1	116.3	82.2
	LCS2	100.3	85.2	96.8	108.7	118.5	96.8	96.2	110.7	123.9	105.5
Estrone	LCS1	96.3	97.9	100.9	111.9	103.5	97.2	87.2	110.6	88.6	98.6
	HDR-1	106.3	99.8	102.4	132.6	110.7	83.1	106.0	111.1	106.2	95.2
	HDR-2	96.7	116.8	112.4	136.3	111.0	86.0	92.3	82.5	119.1	92.8
	HDR-3	117.9	106.7	125.2	147.0	97.3	76.1	93.6	85.8	94.9	102.4
	HDR-4	101.2	98.2	90.7	127.0	81.9	72.1	88.7	99.2	102.8	90.2
	HDR-5	106.7	97.4	112.5	118.3	102.8	92.6	89.8	137.9	128.2	73.0
	HDR-6	98.7	97.7	105.8	124.4	86.5	88.1	124.5	84.3	132.9	95.9
	HDR-7	106.2	111.0	105.9	125.5	100.1	86.5	90.5	104.3	100.0	90.7
	HDR-8	119.3	95.6	110.2	135.4	82.6	79.5	94.0	98.8	99.8	85.6
	HDR-9	107.8	92.4	108.0	117.0	82.7	79.7	94.1	107.4	111.9	87.1
	HDR-10	103.5	103.5	100.7	122.1	91.5	86.0	111.3	133.9	111.8	89.3
	HDR-11	121.1	107.8	95.8	118.7	98.2	82.7	77.9	98.6	127.3	88.4
	LCS2	104.4	95.3	100.5	111.9	97.4	95.0	99.6	101.8	112.3	82.8
Ethylparaben	LCS1	100.2	93.3	93.7	100.2	90.9	98.5	93.0	103.5	130.1	94.8
, ,	HDR-1	103.6	108.7	109.0	117.6	101.8	119.1	113.3	105.8	151.2	125.6
	HDR-2	104.6	103.9	106.8	110.5	88.7	112.2	114.2	108.4	116.5	129.2

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Since Spike	0	2	4	,	10	30	43	00	03	04
Compound	Sample Name										
•	HDR-3	101.7	109.7	106.7	110.5	93.5	93.8	105.3	112.6	156.1	127.8
	HDR-4	105.5	111.0	106.6	115.1	95.7	113.3	109.0	108.1	126.1	121.3
	HDR-5	103.4	105.0	107.5	115.6	94.1	121.9	112.2	122.6	151.5	124.0
	HDR-6	106.6	108.7	107.0	112.9	101.9	119.2	120.3	105.8	166.3	122.3
	HDR-7	106.4	109.3	107.7	112.9	107.1	99.7	111.4	113.8	143.6	120.8
	HDR-8	106.6	103.2	104.2	114.1	102.4	93.5	108.6	110.4	148.2	120.0
	HDR-9	106.4	107.9	102.3	114.2	109.6	116.0	116.3	107.9	166.4	116.9
	HDR-10	109.7	107.4	106.3	108.8	105.4	110.3	114.5	103.1	158.1	132.0
	HDR-11	106.1	107.7	105.2	58.8	101.1	115.4	112.6	113.6	156.5	117.8
	LCS2	96.1	92.1	95.4	104.0	98.4	93.3	105.9	117.1	121.0	99.8
Eliza a acción a	LCS1	97.6	91.9	92.0	109.6	95.4	93.4	96.2	98.6	112.4	94.6
Flumequine	HDR-1	99.8	117.0	99.9	112.8	86.6	107.9	120.2	112.2	145.9	159.6
	HDR-2	113.4	110.5	107.5	109.5	95.0	100.8	101.6	127.7	135.2	149.7
	HDR-3	108.8	104.2	95.6	113.4	99.3	90.9	107.7	122.9	132.0	141.6
	HDR-4	112.7	107.4	96.0	114.8	86.2	95.0	101.0	127.8	131.2	126.4
	HDR-5	100.2	98.5	102.2	118.8	92.0	97.8	113.1	116.4	138.8	140.6
	HDR-6	105.4	108.1	107.9	113.2	97.7	95.8	109.8	113.4	145.0	132.3
	HDR-7	117.4	103.0	115.9	112.5	97.3	92.4	108.1	111.1	125.0	135.2
	HDR-8	99.0	97.3	95.1	101.4	87.4	87.5	107.5	109.2	125.6	132.5
	HDR-9	106.0	107.6	108.2	107.8	106.2	97.7	102.9	104.7	121.4	153.1
	HDR-10	109.6	94.1	96.9	116.2	114.3	95.1	108.8	155.6	130.7	128.5
	HDR-10	114.7	104.9	115.3	74.4	106.6	100.8	97.0	108.1	116.9	127.7
	LCS2	105.0	98.8	103.1	105.4	100.8	95.9	104.7	91.0	110.9	108.6
	LCS1		97.3	103.1	113.4	95.6	97.8	67.3	97.8	101.1	99.0
Fluoxetine	HDR-1	110.8	227.6			67.1				88.8	84.8
	HDR-1 HDR-2	136.2		166.9	203.4		194.2	75.8	83.0 77.7		
		141.5	188.5	196.9	240.2	66.6	217.6	87.4		75.3	107.0
	HDR-3	156.9	247.2	278.1	265.4	64.4	193.6	81.8	81.0	77.6	72.9
	HDR-4	134.5	160.8	166.0	208.1	70.6	180.5	60.7	83.7	75.1	68.6
	HDR-5	152.5	130.8	169.2	180.3	63.7	185.5	81.6	103.6	83.9	81.3
	HDR-6	144.1	163.6	191.6	224.1	70.3	183.6	76.3	82.0	122.3	91.4
	HDR-7	164.3	184.5	218.1	216.5	60.4	245.5	100.8	70.8	81.9	116.1
	HDR-8	168.0	227.6	259.3	256.7	64.2	171.1	61.1	75.0	76.6	78.6
	HDR-9	153.8	132.6	215.4	197.1	65.8	174.6	68.4	88.9	82.1	79.9
	HDR-10	145.9	147.1	215.7	249.2	71.4	174.1	72.2	133.9	91.2	82.5
	HDR-11	154.2	155.7	209.7	151.4	72.4	229.5	70.1	85.7	83.1	91.7
	LCS2	113.7	111.9	109.7	106.4	97.1	113.8	70.3	116.4	95.5	127.9
Gemfibrozil	LCS1	104.6	101.7	105.6	101.2	108.8	93.8	98.6	99.5	83.4	111.6
	HDR-1	120.9	109.7	116.3	115.8	81.2	63.8	88.3	94.7	137.2	189.6
	HDR-2	107.5	113.1	119.3	113.7	77.2	66.2	79.3	79.0	137.6	189.7
	HDR-3	117.1	121.0	119.2	111.8	81.2	63.1	85.2	86.6	135.2	230.1
	HDR-4	120.0	110.1	110.4	107.6	86.1	65.7	84.5	93.8	138.8	205.3
	HDR-5	119.4	121.7	114.1	123.4	110.5	72.9	83.6	94.5	142.2	152.0
	HDR-6	102.0	114.5	118.4	119.4	136.7	63.7	90.6	94.7	130.8	215.3
	HDR-7	109.5	116.7	119.8	126.4	134.9	58.6	84.8	76.6	135.9	166.7
	HDR-8	114.5	114.6	121.1	107.6	125.8	60.9	82.8	94.8	129.8	179.1
	HDR-9	117.6	116.5	120.5	110.7	144.1	65.9	87.7	96.9	138.5	187.9
	HDR-10	106.5	113.3	123.4	120.8	143.3	66.1	76.9	43.2	145.6	182.1
	HDR-11	119.5	113.1	116.7	95.5	140.6	64.2	87.7	88.6	143.6	176.3

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days since spine		_		•						0.
Compound	Sample Name										
-	LCS2	107.5	101.3	100.7	108.3	139.8	92.5	107.9	97.4	87.5	93.1
Ibuprofen	LCS1	100.2	106.8	94.1	103.0	87.0	100.1	91.8	102.5	135.6	91.5
Барготен	HDR-1	100.3	104.8	95.2	110.5	107.8	90.0	108.9	113.3	146.9	114.2
	HDR-2	99.3	100.5	95.3	102.2	94.8	86.5	105.1	108.8	108.3	117.8
	HDR-3	106.3	103.3	93.0	98.3	89.1	88.5	99.4	111.9	140.7	109.1
	HDR-4	101.1	103.1	98.6	99.6	91.9	85.2	102.0	98.7	123.3	113.0
	HDR-5	96.6	99.9	98.9	101.9	78.7	91.1	100.7	114.9	138.7	113.1
	HDR-6	96.2	101.4	96.9	93.4	80.3	83.8	108.1	118.5	154.5	114.1
	HDR-7	95.0	99.1	99.3	94.8	76.0	88.5	99.4	111.9	140.8	108.1
	HDR-8	100.0	105.4	91.2	104.3	77.2	82.9	96.4	107.8	143.1	107.1
	HDR-9	102.2	99.2	92.2	94.0	81.5	88.1	99.6	109.7	161.9	111.0
	HDR-10	99.4	99.8	99.7	97.6	75.4	83.2	106.7	118.5	150.4	116.5
	HDR-11	101.6	100.8	91.2	84.6	75.8	80.1	99.9	113.9	158.2	108.9
	LCS2	100.1	97.9	93.0	107.7	80.4	96.2	95.8	107.2	129.6	91.4
	LCS1	132.2	95.6	100.1	117.6	85.6	108.8	103.2	120.7	138.5	107.9
Iohexol - M+H	HDR-1	74.4	96.3	84.6	90.3	76.3	75.4	74.5	121.2	171.7	129.6
	HDR-2	101.0	79.6	81.2	93.0	66.6	67.6	68.5	102.9	84.8	105.6
	HDR-3	64.6	67.2	79.0	84.2	68.7	90.9	64.8	104.0	128.2	97.1
	HDR-4	84.2	86.9	86.1	90.7	63.8	95.9	72.7	96.4	117.5	100.5
	HDR-5	73.5	100.9	72.6	85.1	72.7	95.8	86.2	116.3	117.9	106.5
	HDR-6	102.8	87.2	101.7	102.9	59.1	86.5	69.5	93.0	109.7	103.9
	HDR-7	67.5	83.0	75.0	89.0	62.8	79.8	73.8	106.9	115.9	124.2
	HDR-8	88.8	70.9	83.8	93.4	74.3	75.0	83.4	99.4	111.5	108.6
	HDR-9	96.4	73.8	90.1	84.3	62.2	90.1	79.5	107.3	144.2	113.6
	HDR-10	105.3	84.4	105.5	76.8	56.3	76.4	87.0	88.6	162.3	129.9
	HDR-11	103.3	95.0	60.6	40.3	70.4	80.2	76.1	95.1	166.9	129.9
	LCS2	127.7	115.0	126.2	117.0	113.4	97.1	102.4	127.4	132.1	124.3
				1							
Iopromide - PRM	LCS1	103.0	93.1	102.8	110.3	94.3	86.0	108.9	88.7	103.1	87.3
	HDR-1	86.0	70.5	52.6	91.1	64.1	83.3	65.6	53.5	103.3	101.5
	HDR-2	98.2	74.1	78.6	99.4	69.0	63.7	66.2	58.2	111.8	111.3
	HDR-3	95.5	57.1	62.4	99.5	73.9	66.8	55.4	72.2	77.8	111.0
	HDR-4	87.6	91.3	74.4	99.1	69.5	80.7	78.0	73.2	99.2	91.0
	HDR-5	97.4	67.2	76.5	111.5	74.5	78.4	59.6	72.2	98.9	97.6
	HDR-6	96.3	92.6	84.3	94.8	78.3	80.6	80.3	82.1	93.7	94.9
	HDR-7	102.6	90.5	77.9	104.1	76.8	75.8	63.1	76.3	85.9	91.2
	HDR-8	88.8	76.2	68.2	91.7	76.6	63.8	73.2	86.3	95.7	102.1
	HDR-9	106.8	90.5	75.6	88.2	92.0	76.3	69.1	71.8	94.5	84.8
	HDR-10	106.5	77.6	76.6	118.7	103.2	70.5	81.1	153.7	99.7	106.2
	HDR-11	102.5	79.0	81.3	49.4	95.7	78.0	63.8	74.7	84.4	89.5
	LCS2	127.1	136.0	136.6	131.5	131.3	111.7	123.7	95.2	123.3	130.2
Isobuylparaben	LCS1	98.2	94.9	101.7	96.5	88.8	96.0	93.8	99.7	124.3	96.3
	HDR-1	99.9	101.5	100.2	104.9	92.5	105.3	129.4	107.8	151.3	118.8
	HDR-2	90.9	96.5	95.6	102.1	89.1	96.0	126.2	106.9	110.2	118.1
	HDR-3	98.1	96.3	92.3	100.1	89.0	98.0	122.7	108.3	139.9	118.8
	HDR-4	97.5	100.6	96.9	100.4	87.0	95.1	120.2	100.7	127.7	105.3
	HDR-5	94.7	100.3	100.8	99.7	88.7	102.2	115.7	110.8	141.2	113.3
	HDR-6	99.2	98.5	98.8	97.1	94.0	98.9	125.1	108.6	162.9	117.9
	HDR-7	94.5	103.2	98.5	98.2	95.2	97.6	118.3	108.5	143.4	116.4

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days omee opine		_		•				33		0.
Compound	Sample Name										
	HDR-8	102.3	92.6	96.4	100.8	94.2	91.7	118.2	107.8	143.9	113.4
	HDR-9	96.5	96.6	95.8	101.6	95.6	104.6	121.4	110.3	165.8	115.3
	HDR-10	92.8	92.4	98.7	96.2	95.4	96.1	115.6	99.0	166.0	119.6
	HDR-11	95.4	100.0	92.6	77.0	91.7	94.7	118.1	104.6	153.8	112.8
	LCS2	95.8	91.7	87.1	97.5	95.0	84.8	103.1	113.9	120.3	94.5
isoproturon	LCS1	101.4	108.7	98.2	109.9	99.8	97.1	106.3	98.9	106.7	96.1
isoproturon	HDR-1	96.1	99.4	85.2	95.2	101.2	101.5	108.7	89.6	120.5	115.2
	HDR-2	108.7	101.1	103.9	101.0	102.1	98.6	111.7	95.5	123.8	140.3
	HDR-3	113.5	95.8	94.7	103.2	103.6	90.0	101.8	99.1	116.7	125.7
	HDR-4	105.5	107.4	93.2	99.4	106.7	102.4	103.5	99.1	114.4	118.3
	HDR-5	106.9	100.5	94.7	110.6	109.0	110.3	104.0	94.6	131.1	120.9
	HDR-6	112.5	102.1	103.3	92.2	118.3	100.6	111.6	92.5	117.3	131.8
	HDR-7	115.2	102.8	102.9	93.5	114.7	97.9	106.3	91.9	118.2	119.8
	HDR-8	103.3	94.7	92.4	94.1	109.2	89.4	107.6	87.3	117.1	116.4
	HDR-9	115.5	101.3	101.0	93.4	132.7	102.8	97.3	91.5	110.9	117.8
	HDR-10	112.7	101.9	94.5	102.5	128.9	90.4	115.4	106.6	116.9	120.7
	HDR-11	113.1	96.9	103.8	83.8	126.1	100.4	105.4	89.1	109.6	116.0
	LCS2	121.7	111.6	113.3	111.8	116.9	103.3	113.3	92.4	106.1	105.1
и	LCS1	95.4	101.7	94.9	115.3	108.2	93.2	104.8	100.3	103.3	105.6
Ketoprofen	HDR-1	67.1	69.6	53.1	73.2	73.9	57.0	62.6	70.4	76.0	73.1
	HDR-2	72.8	75.3	68.3	71.7	75.9	52.0	62.9	82.0	82.5	86.8
	HDR-3	77.1	65.1	60.4	80.5	84.9	48.3	57.8	82.5	77.5	86.8
	HDR-4	76.3	72.8	61.5	75.8	75.6	54.9	71.8	85.2	78.6	83.7
	HDR-5	78.3	64.4	60.3	83.5	77.1	55.5	61.1	75.7	80.5	81.9
	HDR-6	79.0	77.0	71.1	74.4	87.6	58.4	74.8	72.6	83.4	88.6
	HDR-7	82.1	72.9	67.0	76.1	82.1	56.6	67.0	74.9	85.4	75.7
	HDR-8	75.6	61.6	57.7	73.7	84.0	47.5	69.9	78.1	79.0	67.8
	HDR-9	78.2	71.4	59.1	73.0	89.6	56.5	62.1	83.1	74.6	77.3
	HDR-10	75.8	67.9	60.1	76.8	86.9	49.9	75.2	63.5	81.1	83.2
	HDR-11	71.1	68.2	65.3	56.2	88.4	57.3	59.6	72.8	70.1	79.7
	LCS2	93.7	81.2	79.1	87.6	104.6	97.2	86.6	86.4	90.3	88.4
	LCS1	98.5	101.4	94.3	112.9	107.7	89.6	107.6	96.0	98.4	107.9
Ketorolac	HDR-1	66.9	70.7	57.3	71.8	76.7	52.8	68.5	62.3	73.8	79.9
	HDR-2	79.4	66.7	63.1	72.7	60.1	45.0	57.8	55.9	70.1	74.8
	HDR-3	76.5	59.9	59.8	66.5	63.1	46.4	56.8	61.0	67.9	93.2
	HDR-4	65.7	63.9	56.2	67.8	70.7	43.0	55.6	75.7	73.1	80.5
	HDR-5	62.5	63.4	67.1	80.3	76.8		60.6	59.7	73.4	78.2
	HDR-6	70.1	70.2	69.0	71.3	80.2	55.5 51.0	61.1	56.9	69.1	85.5
	HDR-7	72.9	70.2	63.1	70.4	85.4	46.2	61.5	64.2	68.2	78.8
	HDR-8 HDR-9	64.7 64.6	63.7	64.3 67.4	62.9 63.8	70.2 86.7	42.6 50.2	57.9	50.6	69.4 68.9	80.3 73.8
	HDR-9 HDR-10	73.6	70.2 58.9				49.7	55.0	58.9	77.2	
			60.9	63.5 65.4	76.0	86.3		62.8	58.8		79.3
	HDR-11 LCS2	72.7			67.8	83.9	47.4	55.6	68.5	60.7	73.2
		93.9	91.5	90.8	93.4	120.0	97.3	89.7	87.1	95.4	119.9
Lidocaine	LCS1	100.3	101.6	94.9	110.2	101.1	96.8	104.0	100.3	94.0	105.3
	HDR-1	88.6	103.6	84.2	104.9	90.6	68.8	117.0	85.6	75.3	107.3
	HDR-2	102.7	102.6	97.7	126.1	83.3	74.2	110.3	86.9	69.5	109.7
	HDR-3	112.9	100.2	100.8	129.2	91.3	75.5	99.1	98.3	77.3	99.7

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Since Spike	0	2	4	,	10	30	45	80	09	04
Compound	Sample Name										
	HDR-4	89.8	104.2	89.9	113.8	92.5	70.9	98.6	92.9	65.0	96.7
	HDR-5	101.9	94.5	96.4	121.1	92.2	85.4	102.6	82.2	82.6	100.3
	HDR-6	95.5	111.0	91.7	117.4	88.4	82.0	125.1	88.3	80.7	96.8
	HDR-7	105.0	109.2	95.7	113.8	99.9	75.9	97.1	82.0	71.9	88.7
	HDR-8	93.5	93.1	89.5	120.4	90.7	70.3	90.6	78.2	74.8	84.8
	HDR-9	108.1	103.5	105.5	110.9	116.2	88.4	110.1	94.8	81.5	102.0
	HDR-10	106.1	104.6	104.4	130.1	106.2	76.7	112.2	125.8	72.2	107.6
	HDR-11	99.4	97.4	98.3	97.9	108.3	82.3	103.9	85.8	67.4	108.1
	LCS2	123.0	115.4	106.3	115.1	125.0	102.5	119.6	102.6	101.7	140.3
Lincomycin	LCS1	99.4	90.1	99.1	108.5	81.6	89.2	86.7	91.1	115.6	108.5
Lincomycin	HDR-1	112.4	147.9	139.1	131.2	86.1	120.4	126.7	111.3	117.1	132.1
	HDR-2	126.8	134.3	136.4	154.4	127.6	140.6	110.9	161.2	130.4	122.0
	HDR-3	121.2	74.0	122.9	184.2	96.8	93.4	118.1	165.0	104.9	143.7
	HDR-4	92.1	138.6	117.4	145.8	105.2	134.0	93.7	132.5	137.8	111.5
	HDR-5	108.5	102.6	119.4	166.5	99.5	164.2	92.9	134.9	132.6	139.9
	HDR-6	85.5	143.3	134.1	136.0	83.8	142.6	99.2	130.0	117.8	126.7
	HDR-7	104.5	106.7	131.5	156.4	122.6	136.2	99.1	156.4	99.9	139.5
	HDR-8	79.6	139.2	138.0	158.1	97.3	112.6	87.9	116.9	118.0	136.8
	HDR-9	120.8	77.6	173.9	136.9	85.3	131.1	99.1	108.3	109.5	120.1
	HDR-10	90.0	120.4	107.3	137.2	117.5	118.2	98.5	173.8	142.8	115.8
	HDR-11	71.8	126.5	92.4	80.4	100.6	119.7	94.4	154.7	131.8	114.0
	LCS2	106.9	100.6	104.9	106.6	121.2	95.4	96.6	94.0	152.7	127.7
	LCS1	104.0	99.3	105.7	104.4	93.4	101.3	89.3	104.4	127.2	96.6
Linuron	HDR-1	95.4	88.6	92.1	88.1	86.0	80.9	92.1	101.1	155.0	110.4
	HDR-2	92.1	86.8	97.0	88.5	77.7	75.2	98.0	102.5	101.9	113.0
	HDR-3	90.4	87.1	90.8	88.2	80.2	70.0	91.5	103.5	138.4	106.0
	HDR-4	87.2	91.3	90.3	91.5	78.4	75.2	85.8	99.5	123.0	110.5
	HDR-5	90.4	94.6	86.3	88.1	81.7	80.7	93.9	105.6	130.7	114.7
	HDR-6	95.6	88.3	92.5	87.4	83.5	77.8	97.9	110.8	142.7	109.0
	HDR-7	91.3	85.8	92.5	85.4	85.0	76.3	89.8	102.4	138.9	102.9
	HDR-8	89.3	85.6	88.5	87.3	82.5	74.9	85.9	109.8	144.1	103.1
	HDR-9	88.7	90.4	92.9	84.4	90.1	75.5	88.6	108.1	147.3	102.1
	HDR-10	90.5	84.6	88.3	88.8	79.7	71.9	88.5	101.3	158.8	102.7
	HDR-11	89.4	87.9	91.9	65.1	82.9	69.9	92.1	110.1	150.3	103.0
	LCS2	104.7	94.7	101.5	98.3	97.1	100.8	94.6	112.4	131.2	97.3
Language Matanga	1.664	112.9	103.7	100.7	104.3	94.6	109.0	97.4	110.8	125.9	125.3
Lopressor-Metopro	HDR-1	110.8	112.9	92.8	114.2	99.5	104.0	131.0	111.6	124.0	108.7
	HDR-2	102.3	118.9	104.9	105.4	93.3	96.7	124.2	110.1	92.0	116.0
	HDR-3	112.8	112.5	107.6	108.2	93.4	100.3	137.0	113.2	119.4	122.3
	HDR-4	116.2	125.3	106.0	111.7	101.1	94.2	119.9	114.3	109.6	107.7
	HDR-5	112.8	113.1	110.4	117.2	101.4	92.3	124.3	133.1	126.0	124.1
	HDR-6	108.2	115.0	108.2	107.9	105.5	93.3	130.3	121.8	135.1	123.6
	HDR-7	119.2	116.6	108.0	119.3	105.1	92.1	118.4	128.1	106.2	114.0
	HDR-8	110.1	114.0	112.6	115.5	105.4	90.7	125.5	113.5	131.2	117.5
	HDR-9	123.7	105.6	114.9	108.8	107.6	103.6	133.0	131.9	142.2	117.3
	HDR-10	123.5	117.4	113.0	108.6	112.2	85.9	131.1	137.1	135.7	130.7
	HDR-11	111.0	115.1	112.9	87.3	104.9	95.3	132.1	127.2	135.8	131.9
	LCS2	116.2	111.5	97.2	109.5	98.5	106.3	104.9	120.9	114.7	132.9

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16		9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60		84
	Days since spike	- J		-	,	10	30	43		03	04
Compound	Sample Name										
Meclofenamic Acid	LCS1	98.4	96.2	97.6	107.0	92.4	97.4	100.1	108.3	WSS 09-07-16 9/7/16 69 137.3 144.3 99.2 128.0 98.1 129.4 137.7 124.9 132.1 137.3 136.9 133.2 139.1 97.1 65.5 75.8 94.4 75.0 76.4 81.9 82.3 66.6 78.6 108.6 104.7 3.9 4.3 4.1 4.2 5.0 4.1 3.8 6.3 3.8 106.1 110.4 140.7 103.7 104.6 166.2	105.7
	HDR-1	102.9	109.7	114.0	112.8	108.3	83.5	130.3	95.3	144.3	114.6
	HDR-2	97.5	94.2	106.0	97.5	86.5	79.5	113.4	100.7	99.2	112.4
	HDR-3	94.5	92.7	98.0	106.5	85.9	76.9	106.3	100.9	128.0	101.0
	HDR-4	94.1	103.7	100.5	112.2	90.7	73.1	100.3	102.5	98.1	107.2
	HDR-5	95.4	98.3	100.2	104.4	89.6	81.7	99.4	106.8	129.4	107.2
	HDR-6	96.5	97.2	97.6	105.9	96.9	79.0	110.2	104.7	137.7	106.9
	HDR-7	99.0	93.8	95.3	102.5	95.6	74.6	101.5	105.1	124.9	101.3
	HDR-8	99.1	96.2	100.6	97.7	98.2	68.0	99.2	105.4	132.1	97.3
	HDR-9	93.4	95.7	97.2	104.4	100.5	82.3	102.8	105.8	137.3	89.7
	HDR-10	94.9	92.2	96.3	95.0	95.0	73.3	101.6	100.1	136.9	109.1
	HDR-11	92.1	92.1	90.6	86.5	92.6	75.9	98.0	103.2	133.2	100.4
	LCS2	97.2	92.7	97.5	102.4	98.5	100.1	104.2	104.7	139.1	105.5
Meprobamate	LCS1	102.4	93.4	95.4	114.0	110.9	92.5	104.3	99.4	101.2	111.6
Meproparriate	HDR-1	103.6	77.9	95.0	61.9	104.7	240.8	99.1	101.9		76.2
	HDR-2	126.4	107.8	138.8	70.4	75.5	191.0	62.1	43.4		53.3
	HDR-3	93.8	77.7	69.6	106.1	88.4	262.9	67.1	86.6		31.7
	HDR-4	74.0	107.1	63.1	145.4	106.8	169.3	75.1	97.3		41.9
	HDR-5	90.5	69.5	122.0	57.8	107.2	194.3	90.9	77.2		61.2
	HDR-6	104.4	100.9	118.4	92.0	54.6	264.1	40.5	72.6		50.0
	HDR-7	74.8	99.6	98.2	89.0	107.9	212.9	67.1	74.4		76.5
	HDR-8	98.4	72.4	120.9	80.9	131.4	169.8	80.2	87.4		71.0
	HDR-9	115.6	130.0	129.0	91.5	73.4	177.5	78.1	91.4		62.1
	HDR-10	95.3	115.0	123.2	113.5	95.1	192.4	86.2	73.9		38.4
	HDR-11	111.1	92.3	123.9	73.7	112.2	154.0	76.6	81.9		51.4
	LCS2	121.1	116.9	119.4	126.4	133.5	110.9	123.7	104.7		110.2
	LCS1	91.5	100.7	94.8	112.8	98.6	94.4	105.1	92.0		115.2
Metazachlor	HDR-1	61.4	65.1	49.6	47.9	30.4	16.9	10.4	5.1		-1.6
	HDR-2	67.1	63.2	54.3	53.6	32.8	16.2	10.4	5.4		-2.2
	HDR-3	73.1	61.1	51.3	53.5	36.0	14.7	9.8	5.7		-2.3
	HDR-4	70.9	66.8	51.7	53.4	35.2	16.5	9.4	4.2		-2.4
	HDR-5	70.9	59.4	53.5	58.7	33.9	16.2	8.9	5.1		-1.9
	HDR-6	73.8	63.3	57.7	52.3	35.4	16.4	9.3	4.2		-1.9
	HDR-7	72.9	65.0	53.6	51.2	34.9	14.8	10.5	5.0		-2.3
	HDR-8	67.4	64.6	50.9	52.9	32.6	13.2	9.1	4.5		-2.3
	HDR-9	72.1	65.3	51.4	52.0	38.9	16.3	8.9	5.9		-2.2
	HDR-10	75.5	66.0	47.4	57.0	41.3		8.7	3.4		-2.4
	HDR-11	71.1	66.6	53.1	40.5	38.8	14.5 15.6	10.3	3.2		-2.4
	LCS2		106.3	93.9	105.2						122.0
		111.2		1		114.1	101.0	110.1	87.8		
Metformin	LCS1	90.1	87.4	105.4	112.9	120.3	88.1	101.0	106.4		112.5
	HDR-1	174.5	125.6	165.6	154.1	128.7	121.7	121.2	165.0		143.5
	HDR-2	195.4	136.8	155.1	151.2	166.6	133.4	133.4	118.4		162.5
	HDR-3	170.3	123.3	181.8	245.6	136.9	117.6	149.9	129.3		181.3
	HDR-4	140.4	96.7	122.6	105.0	136.7	115.6	128.0	78.7		164.1
	HDR-5	122.0	172.6	166.5	197.9	159.9	161.1	172.0	95.8		160.0
	HDR-6	134.4	128.3	143.5	147.4	131.6	189.4	132.1	81.5		164.0
	HDR-7	167.6	159.4	131.8	152.7	147.1	163.3	125.3	105.5		200.8
	HDR-8	160.6	133.7	250.2	170.6	133.6	135.5	170.7	116.7	166.2	130.0

Wo	rking Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days since spine		_	•	•						
Compound	Sample Name										
•	HDR-9	117.1	133.1	210.3	133.9	117.2	125.2	124.3	96.9	129.2	155.8
	HDR-10	149.2	120.5	140.0	150.0	158.6	143.2	124.9	161.7	126.6	174.1
	HDR-11	193.2	159.6	135.1	N/A	153.6	119.3	137.4	79.2	124.3	179.4
	LCS2	110.8	72.4	81.2	116.5	103.6	80.8	122.6	91.2	94.4	107.0
Methylparaben - M-H	LCS1	96.7	97.1	93.4	105.9	89.1	93.2	92.5	99.9	127.8	91.1
ivietilyiparabeli - ivi-ri	HDR-1	117.9	141.0	131.0	134.9	130.4	112.7	155.2	119.5	167.5	127.0
	HDR-2	122.9	122.8	107.7	118.6	104.7	125.2	127.2	122.7	125.4	119.5
	HDR-3	129.4	125.6	117.1	111.6	110.8	107.7	143.1	114.3	161.2	120.5
	HDR-4	121.7	133.5	105.9	127.9	112.6	114.9	129.1	116.7	138.1	114.1
	HDR-5	118.7	126.2	113.2	109.3	114.5	125.7	131.6	124.6	152.9	126.5
	HDR-6	124.5	131.5	130.9	128.9	124.3	112.6	140.5	130.9	171.7	100.2
	HDR-7	129.0	123.8	103.1	118.4	117.8	109.8	144.6	127.8	153.3	125.0
	HDR-8	118.4	103.6	111.7	119.1	116.5	114.1	140.7	117.6	161.8	106.5
	HDR-9	133.2	126.5	124.9	130.4	122.4	108.9	142.7	127.2	189.1	132.0
	HDR-10	123.9	114.3	116.4	129.3	125.2	111.5	149.9	122.4	168.4	121.4
	HDR-11	127.4	117.7	111.2	84.9	110.3	106.1	149.7	122.4	161.6	111.3
	LCS2	97.0	96.3	85.9	107.6	99.9	90.3	107.3	113.7	126.4	88.9
Metolachlor	LCS1	105.0	101.0	104.1	108.2	95.3	102.8	102.9	105.7	100.8	96.6
	HDR-1	85.8	88.5	75.8	76.4	61.9	42.4	39.1	25.6	26.6	18.7
	HDR-2	90.5	90.5	84.9	80.4	58.6	43.7	41.0	25.5	25.3	18.3
	HDR-3	91.9	84.7	82.8	79.9	57.0	39.9	38.2	26.4	25.5	17.9
	HDR-4	88.5	80.5	80.1	76.7	54.0	39.4	35.5	25.3	24.0	15.7
	HDR-5	91.1	84.3	81.1	78.8	58.2	45.3	37.8	30.5	27.9	17.4
	HDR-6	86.7	86.9	81.8	78.2	60.2	43.3	40.0	25.8	25.7	18.8
	HDR-7	92.5	90.0	84.6	80.1	56.3	41.7	40.0	27.1	25.1	18.4
	HDR-8	88.8	85.3	81.7	79.0	54.8	40.7	35.4	25.1	25.1	17.3
	HDR-9	93.8	84.3	78.2	76.3	62.0	45.0	38.2	25.3	27.0	17.2
	HDR-10	84.6	82.0	83.3	78.8	59.3	43.8	37.1	29.1	28.1	18.4
	HDR-11	101.7	84.4	78.6	62.3	57.7	42.8	40.7	25.1	26.2	17.6
	LCS2	107.5	100.8	104.3	105.2	102.9	98.1	100.7	98.4	94.2	95.1
Naproxen	LCS1	106.8	95.1	98.0	107.5	91.0	89.9	99.8	102.4	123.1	93.0
	HDR-1	119.1	126.7	107.2	127.5	116.1	107.3	156.6	134.1	150.7	155.8
	HDR-2	117.6	111.5	124.3	123.1	88.3	94.5	128.4	134.2	100.5	119.5
	HDR-3	124.4	124.8	122.7	106.4	96.0	90.4	123.3	134.0	158.2	132.4
	HDR-4	121.5	113.2	109.9	120.8	96.8	87.6	110.0	119.9	113.1	130.0
	HDR-5	134.1	118.6	125.6	127.0	94.6	104.5	132.3	129.2	144.1	115.8
	HDR-6	128.7	112.2	108.3	119.0	114.3	94.7	111.2	126.9	147.0	127.8
	HDR-7	123.9	125.6	115.7	119.5	114.0	86.4	117.6	129.5	132.1	121.7
	HDR-8	130.8	113.1	112.2	115.7	111.0	94.4	120.9	120.2	125.7	111.4
	HDR-9	125.1	108.5	129.2	130.6	109.3	103.3	116.9	127.1	159.0	112.0
	HDR-10	119.4	113.1	108.7	105.7	101.6	94.1	117.5	145.9	161.8	128.1
	HDR-11	126.8	115.2	106.4	89.5	98.5	96.7	112.3	145.4	130.8	108.7
	LCS2	99.2	92.2	97.5	103.2	102.2	90.8	96.8	109.8	116.3	98.5
Nifedipine	LCS1	36.2	80.4	72.9	91.8	52.5	70.1	71.6	86.0	85.2	89.4
r · -	HDR-1	98.3	116.3	118.3	163.6	144.2	105.8	157.2	134.1	247.4	125.0
	HDR-2	104.5	115.1	117.5	163.3	142.0	101.6	167.5	140.6	228.0	137.9
	HDR-3	103.0	128.0	131.0	165.0	155.1	105.5	173.6	141.1	255.6	137.6
	HDR-4	109.7	128.4	123.4	175.3	149.4	97.4	178.7	136.0	209.8	127.1

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	24,5 5		_		_						
Compound	Sample Name										
	HDR-5	106.9	126.5	135.6	173.4	150.0	108.2	178.8	147.9	262.8	147.4
	HDR-6	109.1	120.8	137.6	167.1	169.6	106.8	190.2	149.3	279.1	151.7
	HDR-7	108.6	119.7	128.7	171.0	168.1	106.7	180.5	151.0	256.7	136.0
	HDR-8	110.6	123.4	124.2	175.7	156.7	97.8	184.7	146.2	261.9	137.6
	HDR-9	111.1	127.3	122.2	172.7	171.6	113.0	186.8	148.2	292.9	138.0
	HDR-10	101.7	130.4	121.6	162.8	168.3	96.4	199.2	122.9	287.4	139.4
	HDR-11	103.5	127.0	122.0	125.3	160.2	103.9	188.6	150.6	278.2	136.4
	LCS2	28.4	53.4	50.3	54.8	42.6	41.7	63.5	85.9	73.5	66.8
Nonyl-phenol	LCS1	72.9	86.1	101.1	111.9	98.5	69.5	76.9	96.9	107.8	84.4
, ,	HDR-1	117.0	226.0	214.2	305.7	91.8	200.0	243.1	129.1	156.9	180.4
	HDR-2	125.4	232.2	224.8	290.9	79.4	158.0	221.1	155.6	163.8	159.1
	HDR-3	118.9	190.5	207.4	296.5	69.5	164.0	217.5	152.0	171.3	126.0
	HDR-4	120.9	225.3	232.9	316.0	82.8	171.5	175.3	119.8	152.2	111.9
	HDR-5	117.9	202.6	231.6	324.0	83.0	186.2	200.6	138.8	169.0	142.8
	HDR-6	120.4	216.5	233.0	281.7	85.9	182.9	226.8	150.2	177.4	150.3
	HDR-7	115.2	235.3	225.2	276.7	78.2	175.4	185.8	136.0	140.5	128.0
	HDR-8	107.9	180.1	217.8	256.4	66.3	143.4	201.4	120.6	157.3	120.1
	HDR-9	108.4	235.0	288.9	265.5	96.8	192.5	208.2	149.9	167.9	150.1
	HDR-10	111.3	198.0	252.3	293.5	96.9	156.7	240.8	211.4	158.8	141.4
	HDR-11	124.7	240.7	259.5	223.5	93.3	169.6	195.3	129.6	156.1	113.4
	LCS2	71.5	85.0	113.0	112.7	93.3	97.1	118.9	98.7	122.3	93.3
Norethisterone	LCS1	95.5	103.4	93.0	106.5	92.3	104.4	96.2	107.9	108.6	97.2
	HDR-1	75.2	95.1	77.1	101.2	83.5	74.8	102.9	103.9	103.7	105.4
	HDR-2	94.2	97.4	95.5	114.0	93.5	83.8	92.8	111.0	92.9	106.5
	HDR-3	88.2	89.9	79.8	124.7	86.1	67.2	94.6	106.4	89.7	95.2
	HDR-4	84.5	103.0	89.9	110.6	78.1	72.9	102.9	115.7	79.3	91.7
	HDR-5	82.5	93.9	85.2	122.8	110.9	77.4	99.7	116.9	105.6	101.6
	HDR-6	99.1	92.3	89.0	100.1	103.4	89.3	105.9	104.5	105.2	100.2
	HDR-7	91.1	99.0	83.9	108.8	111.5	77.2	95.4	110.2	100.4	113.0
	HDR-8	85.8	84.3	80.2	107.6	101.8	68.0	85.0	102.2	91.7	100.1
	HDR-9	100.7	92.1	93.0	111.4	130.6	80.2	97.1	117.2	87.2	106.8
	HDR-10	102.4	92.3	76.1	113.9	113.9	73.8	100.6	282.6	89.5	121.1
	HDR-11	96.0	90.8	81.1	49.9	115.0	76.0	110.9	111.4	96.6	102.4
	LCS2	106.2	110.1	102.8	117.7	138.7	124.1	124.8	126.7	109.2	116.8
Oxolinic Acid	LCS1	100.4	101.9	95.5	112.7	100.1	92.2	98.8	90.0	105.4	95.1
	HDR-1	84.1	111.4	83.6	87.8	104.0	92.5	124.8	117.3	134.5	132.6
	HDR-2	83.2	109.1	112.9	97.3	108.2	89.6	114.2	126.6	123.7	143.6
	HDR-3	101.0	109.5	102.3	101.7	105.9	91.9	119.3	141.8	121.4	140.9
	HDR-4	86.5	121.8	100.2	100.5	107.9	96.2	117.5	134.1	123.5	125.3
	HDR-5	85.1	109.9	116.8	93.6	109.7	99.8	108.4	136.8	144.0	127.1
	HDR-6	85.3	119.2	114.5	105.8	120.2	107.0	134.2	132.0	135.6	136.2
	HDR-7	80.7	109.0	112.7	116.7	113.0	100.1	119.8	120.6	120.0	147.8
	HDR-8	82.7	111.4	88.5	112.1	114.6	88.8	123.8	122.3	115.1	132.6
	HDR-9	98.3	118.4	103.4	118.1	141.6	103.2	119.5	127.8	120.0	135.9
	HDR-10	97.5	107.4	109.9	118.3	129.6	93.0	119.7	149.6	125.8	144.8
	HDR-11	89.4	117.6	114.7	102.3	136.6	104.4	125.2	130.6	119.1	134.6
	LCS2	128.4	116.5	123.7	121.6	120.3	101.2	121.2	95.6	115.9	122.7
Paraxanthine	LCS1	101.6	93.7	93.2	104.9	101.8	94.7	100.1	103.9	94.1	86.1

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Silice Spike	U	2	4	,	10	30	45	80	09	04
Compound	Sample Name										
	HDR-1	50.4	41.5	47.2	45.6	64.8	43.4	70.8	64.5	84.8	85.0
	HDR-2	60.1	42.5	51.7	37.3	53.2	55.9	80.7	71.8	101.4	78.2
	HDR-3	61.1	44.9	43.6	61.8	59.1	48.0	71.8	63.5	75.1	83.6
	HDR-4	60.2	45.6	35.1	44.9	58.9	53.2	74.2	66.5	77.4	75.7
	HDR-5	66.5	42.7	43.2	35.1	53.3	65.2	77.5	79.2	83.7	71.1
	HDR-6	54.5	46.8	44.0	38.7	56.5	63.9	94.2	78.8	78.3	72.4
	HDR-7	59.2	52.5	43.7	40.3	52.4	65.2	84.4	79.6	78.7	100.8
	HDR-8	46.4	53.9	44.1	43.3	55.2	58.0	63.9	60.8	68.3	74.1
	HDR-9	57.0	50.0	50.5	46.1	60.1	68.5	71.8	66.5	73.4	85.2
	HDR-10	56.9	44.1	39.7	44.4	49.3	44.2	77.6	138.8	84.3	58.1
	HDR-11	45.0	50.5	41.9	34.6	63.7	65.6	78.3	82.7	81.9	59.2
	LCS2	84.7	86.6	88.2	86.3	92.7	111.2	108.9	91.0	86.7	86.7
D (C III.	LCS1	90.6	104.1	97.8	110.4	97.4	94.7	106.8	92.6	107.5	102.4
Pentoxifylline	HDR-1	49.9	63.2	60.8	65.0	69.9	40.5	87.5	46.1	70.6	72.9
	HDR-2	68.3	93.2	64.1	61.9	59.3	50.8	93.7	56.5	88.0	66.6
	HDR-3	63.6	73.5	66.9	56.9	69.1	48.1	98.7	72.2	67.0	68.7
	HDR-4	56.2	89.9	69.6	77.4	58.7	54.3	86.7	49.9	79.9	68.4
	HDR-5	57.1	79.5	64.1	72.1	69.2	61.3	90.6	62.3	82.6	69.0
	HDR-6			62.9	65.0		62.0			83.5	
		63.2	85.5			81.9		97.0	61.0		69.0
	HDR-7	60.6	93.1	85.7	82.3	87.3	61.2	94.4	60.4	75.9	99.3
	HDR-8	58.9	72.3	64.2	68.2	70.4	52.8	95.2	52.4	63.0	82.1
	HDR-9	57.3	74.2	79.5	76.8	79.6	58.2	89.1	72.0	84.4	79.5
	HDR-10	71.5	76.0	83.9	89.3	94.0	62.9	84.4	97.1	64.3	70.3
	HDR-11	66.6	85.0	81.3	57.7	82.5	65.1	99.4	66.2	80.0	71.0
	LCS2	122.8	115.9	108.3	122.6	101.6	103.9	132.2	96.5	124.7	123.9
Phenazone	LCS1	102.6	100.2	95.0	105.6	95.4	93.7	98.1	94.3	94.7	98.7
	HDR-1	104.7	119.6	99.5	97.1	108.2	79.6	127.9	74.8	101.5	90.3
	HDR-2	105.0	122.4	114.7	121.6	103.3	84.2	118.7	87.1	85.7	100.4
	HDR-3	109.3	105.4	102.9	114.7	116.8	85.0	111.9	98.2	82.0	89.5
	HDR-4	112.6	121.7	109.9	95.6	107.2	89.4	121.6	98.6	89.7	87.1
	HDR-5	119.9	118.1	118.3	125.5	110.8	99.6	123.1	81.1	88.4	104.2
	HDR-6	121.7	107.8	123.5	110.6	123.3	95.6	112.7	92.0	90.9	108.9
	HDR-7	109.4	130.6	119.9	124.7	111.8	83.0	113.7	92.5	85.3	98.0
	HDR-8	97.1	117.4	109.9	104.6	103.9	82.8	105.7	82.0	84.7	111.3
	HDR-9	117.2	112.9	126.3	104.0	116.3	88.1	107.3	97.2	89.2	112.3
	HDR-10	107.3	104.9	103.0	101.3	133.0	76.9	130.9	129.4	89.8	123.8
	HDR-11	114.9	108.5	121.5	101.2	134.6	91.6	124.2	80.2	79.8	103.7
	LCS2	135.1	128.2	118.1	120.2	117.8	104.9	123.5	94.0	101.8	122.9
Primidone	LCS1	99.8	97.9	89.2	122.3	100.0	108.3	124.3	103.2	89.7	111.4
	HDR-1	29.9	54.3	42.7	57.5	47.8	27.8	50.7	57.6	33.4	48.3
	HDR-2	39.6	58.2	54.7	61.6	31.2	37.0	47.9	62.5	34.0	65.1
	HDR-3	32.1	44.9	53.5	55.4	36.8	25.3	37.2	68.3	28.8	51.8
	HDR-4	42.7	60.1	45.0	67.4	26.8	37.3	44.8	61.9	30.5	59.7
	HDR-5	45.2	52.9	46.8	59.7	40.6	32.8	41.8	73.8	33.1	48.0
	HDR-6	41.1	56.1	49.4	57.0	50.4	34.6	52.5	64.0	25.4	56.0
	HDR-7	52.1	56.1	46.6	72.2	36.0	26.7	23.5	60.1	26.4	40.5
	HDR-8	31.1	43.7	44.7	65.1	52.2	19.1	44.6	51.7	22.9	45.9
	HDR-9	65.5	43.4	42.5	51.9	56.1	32.8	46.3	58.9	23.6	55.9

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days since spine		_		•						0.
Compound	Sample Name										
-	HDR-10	49.2	63.7	45.6	60.6	46.0	20.8	48.7	88.9	26.3	64.5
	HDR-11	43.3	63.4	44.5	40.7	47.1	32.4	44.9	83.5	28.8	52.3
	LCS2	91.3	109.1	86.2	103.8	129.7	96.7	126.0	117.2	86.9	108.2
Progesterone	LCS1	116.2	91.7	99.3	111.2	107.7	103.6	127.6	109.7	99.2	107.7
riogesterone	HDR-1	98.9	95.7	80.1	113.7	87.8	67.7	110.2	99.2	102.1	95.2
	HDR-2	92.0	100.2	108.5	115.1	78.7	79.1	114.5	91.0	96.2	99.7
	HDR-3	90.6	98.3	84.2	129.9	92.6	62.5	103.9	112.4	87.4	85.9
	HDR-4	97.4	79.6	78.2	107.4	85.3	68.1	90.4	102.8	104.9	78.0
	HDR-5	81.9	87.2	78.0	123.9	83.5	76.6	111.0	132.5	101.2	89.9
	HDR-6	85.8	97.8	90.0	110.0	86.8	71.5	132.8	117.3	103.4	117.0
	HDR-7	116.7	103.6	90.5	117.9	82.7	82.8	111.6	94.7	106.2	91.1
	HDR-8	94.6	87.1	88.6	112.0	76.6	79.7	123.2	97.6	85.0	86.2
	HDR-9	99.2	86.5	92.1	111.5	85.2	78.2	131.5	103.4	108.1	96.3
	HDR-10	93.6	80.3	92.2	109.0	86.4	67.7	109.2	94.4	106.1	90.5
	HDR-11	102.3	95.6	80.5	84.7	101.1	81.6	113.8	92.9	106.7	100.3
	LCS2	100.4	103.9	101.9	117.6	108.4	85.2	139.7	105.6	106.9	99.3
Dropazino	LCS1	96.4	101.3	102.9	108.0	102.3	94.9	100.6	99.4	102.7	92.2
Propazine	HDR-1	85.5	93.8	71.8	84.0	68.5	68.5	79.6	80.6	110.0	84.2
	HDR-2	94.5	100.4	86.1	81.7	85.8	77.8	86.7	84.8	117.1	94.4
	HDR-3	99.2	84.0	80.9	100.2	88.0	71.3	82.7	103.1	116.1	101.2
	HDR-4	94.7	95.9	82.2	90.1	84.4	81.1	89.1	104.2	121.7	92.6
	HDR-5	94.4	89.1	91.5	90.8	92.3	91.7	88.3	93.7	131.9	102.8
	HDR-6	101.9	90.5	93.3	90.2	101.5	86.1	95.8	96.1	122.4	108.0
	HDR-7	96.4	90.5	95.4	95.0	104.5	81.5	98.4	93.5	112.0	99.1
	HDR-8	90.9	89.3	85.8	89.3	96.1	74.0	95.0	90.7	118.0	102.9
	HDR-9	95.6	90.8	86.9	90.8	107.6	82.4	93.1	90.8	113.4	101.1
	HDR-10	98.6	90.4	86.7	100.3	111.5	72.5	103.0	59.5	122.5	109.7
	HDR-11	103.2	93.0	93.6	54.2	117.4	83.5	93.2	84.9	113.5	100.7
	LCS2	113.6	115.6	113.8	116.3	131.9	95.1	121.1	97.0	106.0	111.2
Dranulnarahan	LCS1	100.0	95.8	97.0	103.5	90.9	99.0	91.2	98.9	126.9	97.7
Propylparaben	HDR-1	95.1	97.1	93.5	106.4	102.2	104.8	122.2	104.7	164.0	128.8
	HDR-2	98.3	94.0	94.8	104.9	87.3	101.4	123.1	108.8	114.5	124.9
	HDR-3	95.1	101.3	94.2	98.4	91.4	102.7	119.4	107.1	150.5	127.1
	HDR-4	94.9	97.3	96.1	103.2	93.4	98.5	115.6	104.7	129.2	123.9
	HDR-5	98.3	102.5	100.5	103.9	91.3	107.1	127.3	115.9	153.3	134.0
	HDR-6	96.0	98.3	96.4	104.7	105.0	106.2	120.2	112.5	159.6	129.5
	HDR-7	94.9	94.1	99.1	97.9	101.9	106.2	116.5	114.2	152.7	129.6
	HDR-8	101.7	89.6	91.7	105.2	101.4	98.9	120.9	106.3	162.5	127.0
	HDR-9	98.4	96.1	93.2	105.0	104.3	106.4	121.9	111.5	164.0	145.8
	HDR-10	100.7	96.8	95.7	103.4	102.3	104.6	119.7	130.4	152.8	139.1
	HDR-11	98.2	95.6	87.1	82.4	96.6	103.3	113.6	122.4	169.0	119.9
	LCS2	98.2	95.9	86.9	106.4	102.4	95.1	106.1	117.3	131.4	103.6
Quinoline	LCS1	100.2	100.8	105.7	114.8	103.5	93.5	94.3	103.1	101.1	100.2
Quinonne	HDR-1	89.3	88.1	79.6	95.1	80.9	77.3	84.1	87.0	117.9	92.0
	HDR-2	99.8	80.2	83.6	84.9	79.6	62.0	89.8	95.5	105.1	82.9
	HDR-3	98.3	90.7	82.5	89.6	74.7	73.1	89.6	91.3	97.0	83.8
	HDR-4	90.4	77.4	66.9	81.2	76.1	69.7	83.5	86.2	106.5	78.8
	HDR-5	83.9	83.7	74.7	78.5	74.7	75.7	95.7	102.4	113.4	81.4

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Since Spike	U	2	4	/	10	30	45	60	69	04
Compound	Sample Name										
	HDR-6	87.8	79.9	86.4	89.1	77.2	81.5	90.7	99.9	111.4	83.3
	HDR-7	92.1	84.9	88.7	90.0	83.0	78.5	84.7	94.5	103.8	87.7
	HDR-8	109.3	89.9	78.7	72.6	86.8	65.7	84.8	89.0	114.3	82.6
	HDR-9	89.7	73.0	85.6	91.5	81.3	62.9	83.1	98.5	104.7	77.4
	HDR-10	98.9	83.1	75.6	98.6	81.6	61.3	87.5	110.7	110.6	85.5
	HDR-11	108.5	84.2	76.5	81.5	77.3	70.1	91.7	90.2	113.6	90.7
	LCS2	104.7	95.4	102.5	95.9	99.3	98.9	96.5	100.6	95.8	97.0
Simazine	LCS1	93.4	99.5	99.8	104.8	98.7	99.8	97.7	97.8	101.4	95.9
Jimazine	HDR-1	103.7	118.7	104.2	103.8	106.3	101.9	112.5	94.7	107.4	117.9
	HDR-2	108.5	124.9	106.1	106.1	100.8	106.4	114.2	100.1	105.1	118.6
	HDR-3	111.0	106.3	103.5	103.1	102.1	91.2	111.6	103.3	108.4	121.3
	HDR-4	106.9	120.1	108.8	105.2	87.3	90.8	107.6	102.6	103.2	113.8
	HDR-5	110.3	117.2	107.2	110.3	94.0	95.8	115.0	102.5	110.7	105.1
	HDR-6	100.1	114.7	105.8	103.1	104.8	93.4	109.7	95.1	106.6	112.3
	HDR-7	108.6	114.1	105.6	106.5	104.8	99.2	111.6	93.7	93.4	121.6
	HDR-8	107.9	111.2	110.6	99.0	87.4	95.3	102.5	97.1	108.4	111.6
	HDR-9	116.0	104.8	103.4	95.4	97.2	99.5	113.0	103.8	123.2	109.7
	HDR-10	102.4	121.9	103.4	109.4	96.9	98.4	104.4	104.2	109.8	119.3
	HDR-11	112.2	119.8	114.1	77.6	102.0	93.4	120.0	93.2	106.3	115.4
	LCS2	89.6	100.8	99.1	96.6	93.7	100.7	100.3	95.1	96.3	92.1
Sucralose - M-H	LCS1	95.1	102.3	105.7	103.9	96.4	98.1	97.2	108.1	102.1	104.0
	HDR-1	202.2	231.9	139.8	128.2	156.9	114.4	248.9	145.8	152.7	346.0
	HDR-2	194.7	196.7	163.7	179.4	176.7	203.6	253.6	298.1	181.6	248.1
	HDR-3	251.0	139.4	149.0	186.3	204.5	187.9	255.0	189.1	253.4	241.0
	HDR-4	185.1	147.3	136.7	170.5	147.5	172.6	262.4	132.2	146.2	204.6
	HDR-5	207.8	164.1	146.7	148.9	154.9	158.0	282.0	189.3	248.3	251.2
	HDR-6	203.3	141.2	148.3	142.2	201.1	154.0	250.0	132.4	187.2	195.7
	HDR-7	238.0	190.4	180.9	140.9	123.9	137.1	275.4	172.5	179.9	220.1
	HDR-8	214.7	147.5	126.1	138.3	162.7	124.9	234.9	150.5	111.5	228.6
	HDR-9	247.8	157.8	105.4	123.9	142.6	155.3	259.1	151.8	220.1	221.0
	HDR-10	199.6	146.2	136.6	148.2	153.7	102.8	261.7	169.8	132.8	215.3
	HDR-11	163.2	126.2	147.0	101.1	186.9	149.3	250.5	107.9	167.8	182.3
	LCS2	102.4	101.0	104.5	100.0	100.9	105.7	107.8	101.7	95.0	105.2
Sulfachloropyridazi	ine LCS1	92.1	95.4	95.3	111.3	103.6	92.9	101.3	95.8	103.7	115.2
. ,	HDR-1	24.0	24.8	24.4	14.3	42.3	8.8	29.2	12.9	51.7	27.6
	HDR-2	21.5	25.7	23.1	27.2	37.0	18.7	19.4	10.6	48.0	31.7
	HDR-3	45.9	10.2	17.0	18.8	47.2	15.1	27.1	28.9	44.8	30.2
	HDR-4	21.3	23.0	28.4	19.6	41.2	25.9	35.1	23.6	56.7	27.0
	HDR-5	18.3	21.1	23.2	17.3	48.3	24.9	30.5	19.7	60.6	35.4
	HDR-6	13.4	32.9	37.8	23.6	65.7	32.3	28.7	15.1	46.0	21.9
	HDR-7	23.6	54.6	32.0	21.0	25.2	21.0	37.6	27.3	41.4	32.9
	HDR-8	36.9	19.5	31.5	16.3	43.8	35.2	43.7	29.7	43.3	32.2
	HDR-9	26.4	33.7	35.3	24.2	46.3	34.4	41.1	29.2	48.0	29.6
	HDR-10	22.0	31.0	29.7	16.1	55.2	13.9	42.7	24.3	60.9	23.5
	HDR-11	23.8	30.7	51.0	16.5	46.0	30.1	36.2	19.7	40.5	17.4
	LCS2	90.2	88.6	87.7	98.9	86.5	92.7	100.5	91.7	106.1	134.4

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16		9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60		84
	Days Since Spike			-	,	10	30	45	00	03	04
Compound	Sample Name										
Sulfadiazine	LCS1	96.7	104.2	105.5	108.8	107.6	105.3	107.4	96.3	## W\$\$ 09-07-16 9/7/16 69 111.6 117.8 110.3 143.1 144.5 149.3 93.8 124.0 120.1 140.6 173.6 137.0 110.4 133.8 131.6 99.6 123.7 97.6 119.0 126.9 107.8 121.6 129.3 128.8 110.8 131.4 110.3 138.9 139.4 84.8 80.2 80.6 64.0 51.0 156.9 136.9 149.9 63.3 113.5 130.3 54.6 17.9 128.3 106.0 82.3 47.8 254.1 85.7	99.8
	HDR-1	91.1	81.8	102.0	67.4	49.7	104.1	88.8	112.4	117.8	81.2
	HDR-2	57.0	63.1	52.3	73.1	45.4	76.6	104.7	97.2	110.3	141.5
	HDR-3	97.4	178.4	91.9	72.5	74.2	111.5	145.8	133.7	143.1	101.3
	HDR-4	100.6	196.6	91.8	58.5	39.1	96.0	140.0	90.7	144.5	84.9
	HDR-5	101.2	188.1	109.6	139.8	89.2	68.0	170.1	130.6	149.3	95.6
	HDR-6	116.2	81.2	46.9	59.6	77.9	86.9	101.1	105.9	93.8	79.4
	HDR-7	126.0	141.3	91.2	73.8	5.5	65.9	227.7	99.7	124.0	78.3
	HDR-8	73.6	68.0	136.3	77.7	32.2	62.4	42.5	109.9	120.1	79.6
	HDR-9	120.0	70.5	82.5	45.9	69.9	60.4	108.7	118.7	140.6	65.3
	HDR-10	88.6	54.4	178.6	99.3	95.4	40.4	111.6	94.5	173.6	91.7
	HDR-11	86.0	82.7	119.3	N/A	78.2	174.3	154.7	98.5	137.0	46.9
	LCS2	92.6	98.0	97.7	98.8	102.5	103.7	115.5	99.9	110.4	97.5
Sulfadimethoxine	LCS1	100.5	96.0	100.9	105.0	95.8	100.6	92.2	96.5		92.1
Sullaulilletiloxille	HDR-1	93.7	145.4	104.1	121.9	92.8	90.1	82.7	77.7		111.3
	HDR-2	102.9	124.2	110.2	124.1	91.1	86.9	94.8	73.5		112.2
	HDR-3	106.9	125.3	123.7	103.0	91.3	85.9	87.7	78.3		114.8
	HDR-4	91.6	144.9	138.0	127.7	92.7	85.2	87.5	75.2		112.5
	HDR-5	119.4	111.6	153.0	116.3	94.9	85.9	94.2	86.0		92.5
	HDR-6	125.2	136.3	138.9	121.3	100.3	91.2	97.6	70.6		95.4
	HDR-7	109.8	127.3	128.9	112.9	106.5	85.2	104.8	84.0		104.2
	HDR-8	116.9	109.7	125.4	109.1	97.8	83.6	88.7	79.0		109.9
	HDR-9	101.8	112.3	131.2	127.5	129.3	88.9	79.4	75.8		92.8
	HDR-10	107.6	119.0	110.6	107.9	105.4	85.4	99.5	85.8		134.2
	HDR-11	121.0	129.4	124.7	60.9	102.5	80.9	83.2	75.2		103.9
	LCS2	89.3	97.2	92.6	92.9	95.0	103.6	102.2	111.4		91.4
6 16	LCS1	92.5	92.8	94.8	105.8	93.0	89.3	101.5	90.1		103.9
Sulfamerazine	HDR-1	138.0	86.1	61.8	107.5	108.0	54.0	41.1	58.8		55.2
	HDR-2	91.5	130.8	146.9	94.6	84.5	171.4	63.5	53.8		81.6
	HDR-3	65.8	158.3	107.4	95.5	113.7	96.1	91.3	57.5		167.9
	HDR-4	91.6	101.8	89.3	137.0	146.7	121.3	88.9	100.5		224.4
	HDR-5	118.4	101.6	77.6	200.3	92.3	148.6	51.5	118.7		45.5
	HDR-6	187.0	154.4	104.8	75.0	220.7	211.2	94.6	73.4		120.2
	HDR-7	99.2	35.0	117.0	179.4	82.1	128.6	119.0	92.2		107.5
	HDR-8	101.8	148.4	88.7	146.3	131.3	108.7	99.7	98.0		91.6
	HDR-9	122.5	129.1	102.5	83.5	139.4	66.4	107.2	70.8		89.1
	HDR-10	144.0	100.3	120.7	107.1	125.2	113.6	269.0	115.8		52.4
	HDR-11	115.2	98.2	53.1	74.6	81.7	65.2	121.2	155.5		111.7
	LCS2	108.0	111.7	102.5	114.4	105.1	86.7	115.9	96.3		126.2
_											
Sulfamethazine	LCS1 HDR-1	102.1	95.2 131.2	101.7 184.7	111.7 64.9	88.5 58.3	95.2 157.3	98.5 126.0	109.6 41.8		113.6 113.4
	HDR-2	150.8			78.4						
	HDR-3	97.1	156.4 194.1	91.2 67.7		148.5	103.6	136.1	94.6		188.0
		62.9		37.6	67.3	108.9	118.5	85.1	58.7		41.2
	HDR-4	132.1	90.9		123.1	143.4	143.5	123.4	107.1		176.0
	HDR-5	190.6	132.0	201.5	124.4	169.3	174.6	149.2	52.9		119.2
	HDR-6	100.8	99.8	205.0	62.1	47.7	120.5	129.4	55.9		125.0
	HDR-7	114.8	173.6	65.1	105.4	228.2	84.0	120.0	99.2		148.2
	HDR-8	147.0	96.1	174.0	154.7	231.4	154.0	57.6	87.3	85./	123.1

	Working Stock Standard ID Analytical Date	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16							WSS-09-21-16
		7/1/16	7/3/16	7/5/16	WSS 06-30-16 7/8/16	WSS 07-15-16 7/17/16	WSS-07-25-16 7/31/16	WSS 08-15-16 8/15/16	WSS 08-29-16 8/30/16	WSS 09-07-16 9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	Days Since Spine		_		•	20					0.
Compound	Sample Name										
	HDR-9	117.0	125.8	124.9	103.6	144.1	182.5	139.1	168.2	70.2	135.5
•	HDR-10	114.8	100.8	152.8	118.5	126.2	138.4	92.7	110.5	60.4	157.3
	HDR-11	139.4	69.5	103.5	60.6	118.7	70.4	138.9	124.3	74.8	142.8
	LCS2	98.1	90.8	95.0	105.2	98.6	94.7	107.9	106.3	126.6	111.6
Sulfamethizole	LCS1	98.5	92.3	99.5	108.4	82.7	91.6	92.0	94.1	94.2	106.5
Juliamethizole	HDR-1	202.2	140.0	178.4	200.4	290.4	215.2	230.6	152.0	183.4	77.7
	HDR-2	266.4	254.9	242.2	174.9	215.1	304.5	238.6	123.8	108.8	193.0
	HDR-3	254.7	188.5	206.6	92.5	307.7	369.9	328.3	155.0	51.1	123.2
	HDR-4	268.7	174.4	184.4	160.7	267.9	273.0	303.3	278.1	276.3	93.0
	HDR-5	174.3	225.2	190.9	158.4	262.5	330.2	259.0	251.1	243.2	285.5
	HDR-6	306.7	202.2	274.9	183.1	324.4	335.5	326.6	264.4	267.5	281.9
	HDR-7	218.0	280.2	148.4	184.5	286.2	242.9	257.9	230.7	253.2	81.7
	HDR-8	209.1	171.9	187.9	224.6	268.5	252.9	185.8	332.3	104.7	169.5
	HDR-9	180.9	277.3	217.1	147.0	360.3	315.4	303.5	279.7	229.8	172.4
	HDR-10		199.6	240.2	174.9	264.9	275.4	217.2		205.4	333.5
	HDR-10	219.3							142.3		
1		239.7	166.4	285.7	141.0	314.8	317.1	251.1	214.9	127.2	203.7
	LCS2	93.4	94.1	98.4	103.7	89.8	88.8	89.3	93.9	94.6	103.0
Sulfamethoxazole	LCS1	99.7	101.4	101.2	106.4	101.9	99.8	100.1	102.6	101.5	102.2
ĺ	HDR-1	97.9	97.1	69.9	105.7	92.3	66.5	102.8	85.8	90.3	90.0
1	HDR-2	83.6	98.8	101.6	85.9	78.6	64.1	63.9	80.2	93.9	83.1
1	HDR-3	86.1	91.4	84.6	106.7	81.6	59.5	87.0	74.9	88.1	90.4
	HDR-4	95.7	79.0	76.8	85.9	98.0	55.8	67.8	93.6	80.6	78.5
1	HDR-5	80.7	76.5	98.3	92.6	117.3	64.9	67.2	81.1	90.4	83.7
1	HDR-6	81.4	94.9	90.5	88.6	66.6	58.4	97.2	93.0	101.5	98.6
1	HDR-7	112.5	112.3	94.3	97.8	82.2	79.7	82.4	81.7	93.7	113.3
1	HDR-8	69.9	80.7	96.8	77.5	83.6	66.4	85.0	66.4	95.1	89.3
	HDR-9	91.9	76.2	89.3	93.2	78.3	66.1	86.5	98.6	91.6	86.6
	HDR-10	91.0	79.3	95.5	76.2	78.9	65.8	91.8	78.4	79.8	69.2
	HDR-11	86.1	107.3	80.4	60.2	102.6	68.6	77.3	93.1	87.5	98.2
	LCS2	100.5	98.9	104.1	102.2	98.1	98.0	98.9	96.5	96.6	100.2
Sulfathiazole	LCS1	95.8	93.9	93.7	101.6	89.5	91.5	99.2	95.1	131.8	100.5
	HDR-1	80.1	63.0	55.9	86.4	67.3	60.7	62.9	94.4	114.4	70.1
	HDR-2	82.2	60.7	56.9	69.8	75.6	68.5	81.7	100.6	97.6	104.6
	HDR-3	63.5	77.2	49.0	64.4	77.9	49.8	48.6	80.5	114.4	91.2
	HDR-4	60.6	82.3	56.9	66.3	75.1	36.4	32.2	99.2	71.7	95.2
	HDR-5	80.3	69.5	51.4	77.3	62.2	50.4	45.3	72.6	97.9	88.1
	HDR-6	58.6	71.8	67.2	87.1	79.7	37.1	60.6	88.9	101.0	87.1
	HDR-7	74.2	63.2	63.9	72.5	62.4	62.6	70.6	73.1	103.8	68.3
	HDR-8	65.0	62.6	64.7	69.9	80.9	61.9	46.0	87.2	109.8	60.2
	HDR-9	74.5	73.4	65.5	81.9	54.4	65.2	42.2	100.8	118.7	67.2
	HDR-10	58.1	59.9	74.1	71.1	54.1	55.4	78.5	57.5	104.2	62.9
	HDR-11	75.1	62.0	58.5	31.2	56.5	46.0	67.9	88.8	123.5	93.1
	LCS2	85.7	82.1	80.4	100.8	102.3	84.6	94.8	114.3	111.3	95.8
Culformations	1.664	103.1	96.6	95.4	108.3	95.9	92.2	103.1	84.7	104.8	98.0
Sulfometuron methy	HDR-1	55.6	51.8	44.2	45.6	53.9	47.7	63.3	59.2	84.8	90.2
	HDR-2	53.9	44.6	50.1	44.3	55.7	45.9	58.5	55.4	88.6	90.2
	HDR-3	58.8	44.6	51.0	41.7	57.9	41.8	51.7	62.0	82.0	82.8
	HDR-4	58.8	46.5	45.4	41.7	57.9	41.8	54.3	69.9	95.0	82.8 86.6

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7	16	30	45	60	69	84
	22,000.000		_	-	-						
Compound	Sample Name										
	HDR-5	46.8	47.1	47.1	40.7	52.7	43.6	55.3	57.0	83.2	84.0
	HDR-6	52.8	51.4	55.9	41.8	58.5	50.6	56.1	57.3	82.8	81.6
	HDR-7	56.5	48.2	54.1	43.0	48.5	44.5	50.7	51.2	83.5	84.9
	HDR-8	54.3	44.2	46.6	43.5	48.7	43.6	60.4	49.8	74.3	86.5
	HDR-9	54.9	47.6	52.8	38.9	58.4	46.6	54.3	52.8	81.0	84.2
	HDR-10	58.6	42.8	52.8	48.8	57.1	43.9	60.2	87.3	77.3	84.6
	HDR-11	54.0	49.0	51.1	42.8	59.3	49.0	58.3	59.8	70.1	81.3
	LCS2	93.7	87.5	94.8	83.0	85.7	105.8	92.2	69.5	84.9	85.9
TCEP	LCS1	111.9	102.5	99.9	107.3	92.9	96.5	108.7	97.4	101.4	98.6
TOLI	HDR-1	57.2	72.0	70.6	72.1	47.9	49.6	70.1	74.1	86.1	100.2
	HDR-2	62.8	72.3	67.9	69.4	55.2	60.4	72.7	85.4	96.1	95.0
	HDR-3	57.0	68.9	68.8	60.6	50.0	37.6	68.4	80.2	66.4	110.3
	HDR-4	64.1	71.3	59.3	72.2	56.8	46.0	70.9	80.6	79.5	102.9
	HDR-5	77.0	72.5	72.7	73.3	59.6	48.2	76.7	84.2	100.4	93.4
	HDR-6	69.5	71.4	78.9	74.6	44.2	58.5	91.6	72.7	97.3	119.9
	HDR-7	65.7	78.7	67.1	67.2	49.7	47.2	63.6	83.5	87.3	104.9
	HDR-8	63.6	82.4	71.5	66.3	35.2	55.1	58.2	80.8	85.1	97.9
	HDR-9	58.1	65.0	62.7	62.5	41.4	39.1	67.2	90.2	94.3	95.4
	HDR-10	61.4	74.6	66.8	66.4	47.2	48.7	84.5	80.1	86.8	102.4
	HDR-11	83.5	63.5	69.9	58.0	41.1	49.4	1.4	81.9	82.3	117.7
	LCS2	103.7	95.8	89.6	107.7	75.0	100.7	94.0	88.2	101.4	85.2
TCDD	LCS1	108.8	99.3	103.7	117.0	124.0	117.0	119.3	84.6	165.3	82.2
TCPP	HDR-1	73.5	93.4	81.7	104.2	120.1	78.1	138.3	98.7	196.2	102.5
	HDR-2	90.2	94.7	96.3	103.1	153.8	97.0	121.9	104.4	137.9	119.0
	HDR-3	92.7	87.3	98.5	111.9	147.5	110.7	134.0	145.1	186.0	97.4
	HDR-4	80.1	93.2	106.3	114.6	168.9	95.3	144.6	88.0	168.7	106.6
	HDR-5	84.5	110.0	95.8	115.2	170.4	97.8	143.2	120.7	174.5	97.8
	HDR-6	93.5	100.6	86.8	100.5	125.8	112.8	152.4	137.2	215.5	109.1
	HDR-7	92.2	92.7	98.6	117.7	119.7	122.2	146.6	121.0	194.3	92.8
	HDR-8	99.5	95.6	93.0	118.0	100.6	87.4	134.7	108.9	249.7	92.8
	HDR-9	87.7	103.9	100.7	105.9	123.1	112.0	132.1	147.5	224.1	99.0
	HDR-10	86.9	102.2	86.9	109.2	135.8	102.6	170.1	824.4	206.9	105.8
	HDR-11	91.0	83.6	102.2	68.5	121.4	86.7	161.7	149.1	266.7	97.4
	LCS2	119.8	98.0	84.2	111.3	77.2	120.0	117.3	85.7	203.8	69.8
	LCS1	124.3	99.8	101.7	111.7	113.6	101.5	137.6	101.1	138.4	80.5
TDCPP - PRM	HDR-1	65.5	56.9	58.4	68.0	49.4	47.8	53.3	65.9	73.2	59.9
	HDR-2	77.8	73.1	75.9	51.8	47.5	41.3	46.1	70.7	60.7	52.3
	HDR-3	70.3	55.6	60.4	49.8	51.4	44.0	47.6	73.1	76.9	47.3
	HDR-4	63.2	52.3	61.6	50.8	54.4	38.7	44.7	57.2	55.2	35.9
	HDR-5	80.3	58.0	61.2	49.4	55.1	51.0	42.1	73.2	61.6	46.8
	HDR-6 HDR-7	86.5 71.9	54.2 52.4	67.5	53.7 52.1	54.4	49.6 38.0	41.6 45.2	74.7 57.3	67.3 75.4	48.9 51.4
		+		54.3		48.0					
	HDR-8	75.0	54.5	70.1	48.1	47.4	41.0	36.0	68.7	72.8	38.1
	HDR-9	99.4	50.8	67.5	46.5	53.8	41.0	41.2	70.0	74.1	49.1
	HDR-10	91.3	48.0	73.2	51.2	71.5	51.0	40.8	95.3	78.8	49.0
	HDR-11	76.0	53.1	64.2	108.1	54.3	36.3	45.3	68.3	75.3	41.0
	LCS2	101.2	77.2	74.3	78.4	131.3	81.6	76.8	110.3	83.1	44.3
Testosterone	LCS1	101.1	106.3	104.5	118.1	94.8	99.0	98.2	101.4	92.2	82.7

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Since Spike	U	2	4	,	10	30	45	80	09	04
Compound	Sample Name										
	HDR-1	101.3	114.2	92.2	106.1	84.3	92.8	89.2	98.0	95.5	79.5
	HDR-2	106.2	108.4	113.7	105.2	83.1	85.3	93.5	115.4	97.7	83.5
	HDR-3	112.6	113.5	110.0	118.0	76.8	78.2	92.0	108.3	100.6	80.1
	HDR-4	98.5	95.2	94.5	101.1	74.8	86.9	88.4	111.3	93.0	78.2
	HDR-5	91.2	99.5	100.7	101.8	86.4	80.4	85.4	146.2	108.4	83.8
	HDR-6	101.2	104.2	115.9	107.1	88.3	84.3	92.0	102.2	95.7	85.7
	HDR-7	115.9	120.5	103.5	111.8	83.1	73.1	82.4	98.7	98.1	83.1
	HDR-8	101.5	111.5	104.0	115.4	68.2	76.0	80.4	95.1	89.1	74.1
	HDR-9	93.4	102.6	101.3	99.1	84.2	80.8	81.2	109.3	104.8	81.3
	HDR-10	99.6	97.5	104.5	109.0	83.2	82.4	87.4	143.0	108.0	83.3
	HDR-11	111.8	93.8	95.2	97.1	79.7	83.3	97.8	96.2	103.4	82.4
	LCS2	100.4	103.6	110.8	112.8	82.4	96.9	95.4	93.4	98.7	85.5
	LCS1	66.2	102.6	106.5	111.4	114.8	82.8	101.3	99.1	101.0	111.2
Theobromine	HDR-1	77.6	94.7	37.5	62.6	74.9	88.5	86.3	24.9	104.0	131.2
	HDR-2	57.3	67.0	44.0	90.9	90.7	86.1	51.1	134.8	132.6	119.7
	HDR-3	74.5	59.0	68.7	125.5	66.1	61.9	40.6	72.7	105.0	132.3
	HDR-4	57.3	83.6	82.3	72.2	99.4	94.4	53.8	94.8	112.2	140.4
	HDR-5	58.7	57.7	94.7	80.0	90.5	85.7	109.0	46.0	114.2	120.9
	HDR-6	38.3		98.3	86.2						
			64.8			88.8	61.9	61.4	74.6	116.7	91.1
	HDR-7	52.8	73.4	70.7	75.1	72.4	76.3	159.2	87.3	109.6	115.7
	HDR-8	60.9	88.0	67.3	89.9	66.9	99.0	98.2	89.4	106.4	119.1
	HDR-9	59.1	73.1	64.0	66.3	75.4	78.6	77.2	84.5	105.5	113.9
	HDR-10	66.6	70.6	70.2	73.7	83.9	70.6	86.9	598.8	116.0	127.3
	HDR-11	58.6	48.4	76.6	60.3	62.4	93.1	54.6	77.0	100.0	114.3
	LCS2	67.1	92.7	108.1	107.3	98.9	113.1	81.8	93.0	96.6	90.8
Theophyline	LCS1	77.7	91.3	101.8	106.1	114.3	105.6	83.2	99.0	94.4	110.2
	HDR-1	54.2	51.8	69.1	33.5	72.2	162.3	378.4	357.5	132.4	182.2
	HDR-2	50.6	79.2	73.0	55.9	79.8	245.5	268.3	360.4	136.3	166.1
	HDR-3	36.9	58.1	58.4	25.9	106.6	177.3	323.9	226.0	159.5	175.8
	HDR-4	47.0	47.9	74.4	30.1	75.0	167.4	181.7	255.6	130.7	174.4
	HDR-5	22.8	47.7	78.1	39.3	113.0	218.0	197.1	288.8	135.4	161.1
	HDR-6	28.7	51.1	53.2	40.8	84.2	198.1	271.0	140.4	129.9	128.9
	HDR-7	43.7	56.4	83.1	45.6	63.8	197.4	307.3	193.7	140.8	167.1
	HDR-8	44.7	36.4	58.2	59.6	79.2	210.6	161.8	149.0	108.8	178.7
	HDR-9	34.0	54.1	54.4	33.3	91.0	176.5	190.2	229.2	117.4	165.8
	HDR-10	54.6	33.0	80.9	27.4	105.8	104.9	140.8	486.9	122.8	148.4
	HDR-11	32.9	31.7	87.7	31.5	53.7	180.8	177.4	205.2	147.4	174.1
	LCS2	70.1	96.2	90.0	88.1	108.3	92.5	67.7	93.7	90.3	100.7
Thiabendazole	LCS1	100.7	97.5	96.3	108.5	90.0	95.4	100.0	89.5	97.5	104.3
	HDR-1	84.3	98.5	95.1	90.9	108.9	37.8	103.7	73.5	101.4	99.9
	HDR-2	93.7	101.8	99.9	97.9	97.9	33.3	102.7	79.3	99.4	101.4
	HDR-3	87.9	91.3	97.9	96.3	91.9	30.9	106.8	77.9	105.3	93.3
	HDR-4	84.6	75.7	86.1	104.7	102.8	32.9	99.3	82.6	106.8	83.7
	HDR-5	84.1	89.7	102.0	93.5	99.1	37.4	99.3	101.9	109.9	87.8
	HDR-6	76.8	91.4	99.3	101.4	98.6	33.3	98.1	84.8	99.7	98.6
	HDR-7	92.6	101.3	102.4	112.6	89.8	34.2	104.5	80.3	105.2	101.6
	HDR-8	84.9	86.8	100.3	102.9	93.9	36.0	89.5	78.4	96.8	95.6
	HDR-9	82.1	93.5	102.8	94.7	100.7	37.8	95.0	82.6	105.3	92.8

	Working Stock Standard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
	Analytical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
	Days Since Spike	0	2	4	7/8/10	16	30	45	60	69	84
	Days Since Spike	0	2	4	,	10	30	43	00	03	04
Compound	Sample Name										
•	HDR-10	69.8	86.2	98.5	104.4	101.1	36.8	99.7	84.5	103.4	98.4
	HDR-11	101.1	96.7	90.5	82.8	93.1	35.2	108.6	77.7	96.8	103.6
	LCS2	105.7	102.2	105.0	112.3	109.8	98.4	96.5	95.3	95.4	107.0
Triclocarban	LCS1	128.5	97.0	101.8	105.6	74.9	99.8	103.2	89.2	129.2	98.4
THEOCUIDAN	HDR-1	117.1	101.1	96.4	115.0	73.2	64.8	93.8	59.8	97.0	64.6
	HDR-2	130.0	102.0	96.3	110.6	66.3	52.7	90.8	55.1	70.8	61.7
	HDR-3	117.4	101.9	100.5	112.8	61.4	61.7	74.7	55.5	79.7	63.0
	HDR-4	133.0	109.5	102.0	113.0	68.2	59.4	66.0	48.3	75.5	51.6
	HDR-5	121.5	115.8	100.2	110.3	67.3	63.6	78.5	62.7	81.6	56.3
	HDR-6	145.4	110.8	110.0	117.4	70.8	55.4	87.9	58.5	98.6	53.5
	HDR-7	131.6	110.1	109.8	111.5	66.8	63.1	71.3	59.3	85.6	52.4
	HDR-8	131.4	110.1	97.4	115.5	59.5	59.3	78.1	54.0	83.7	49.7
	HDR-9	132.1	116.7	113.6	114.5	69.9	63.1	86.5	58.4	113.9	53.0
	HDR-10	132.5	106.2	101.7	101.5	72.8	54.2	94.3	68.5	102.9	64.2
	HDR-11	141.0	115.4	108.0	119.6	59.4	54.4	83.0	58.3	95.5	56.0
	LCS2	125.2	102.1	101.2	112.2	92.8	95.4	121.7	99.4	123.3	88.9
Triclosan	LCS1	73.4	77.1	82.8	91.6	80.4	83.3	73.2	85.0	124.5	91.6
TTICIOSATI	HDR-1	112.1	122.7	106.6	152.5	98.0	104.0	134.4	100.8	150.0	102.6
	HDR-2	111.5	126.6	113.2	154.6	89.0	94.9	136.1	100.3	115.9	105.0
	HDR-3	106.8	120.8	114.1	154.0	83.3	103.4	126.8	100.5	134.0	104.8
	HDR-4	112.4	120.4	114.6	155.2	85.2	95.6	121.5	91.8	117.6	91.6
	HDR-5	109.6	129.0	116.8	151.7	88.3	115.1	131.8	103.6	136.2	100.7
	HDR-6	116.0	117.0	111.2	153.4	96.0	101.9	133.9	104.6	151.2	98.6
	HDR-7	113.7	120.7	113.7	146.6	93.0	115.4	115.5	101.1	137.7	97.6
	HDR-8	112.7	115.8	113.6	157.0	85.4	103.2	128.2	95.1	130.6	92.0
	HDR-9	117.2	118.7	109.3	147.1	94.3	109.6	136.7	97.6	156.5	98.2
	HDR-10	112.7	119.6	107.1	150.3	93.4	108.9	134.0	111.3	152.8	110.6
	HDR-11	119.5	119.6	105.5	142.8	88.7	101.0	136.0	96.4	146.1	102.0
	LCS2	60.8	60.7	60.3	79.0	76.3	62.4	75.8	96.8	110.8	85.6
Trimethoprim	LCS1	96.4	87.5	95.8	108.8	105.2	101.9	104.1	100.7	103.6	96.2
minethopini	HDR-1	89.4	83.8	98.8	111.2	87.5	66.3	96.6	94.4	88.8	95.0
	HDR-2	88.0	86.0	95.8	92.6	87.1	67.8	76.5	91.6	96.5	86.8
	HDR-3	91.3	86.0	91.4	90.7	78.5	67.3	91.9	96.6	88.8	94.6
	HDR-4	97.7	88.2	86.7	83.1	77.9	69.9	92.8	88.1	109.1	91.8
	HDR-5	89.8	78.0	102.1	83.7	73.2	76.8	85.6	105.8	94.0	96.4
	HDR-6	100.2	95.1	80.0	82.8	93.1	72.4	86.5	98.1	95.8	91.2
	HDR-7	90.7	83.7	98.6	73.7	97.0	65.4	104.9	98.7	94.4	88.9
	HDR-8	91.1	84.0	73.0	92.9	84.1	62.1	91.7	98.5	92.1	96.0
	HDR-9	82.4	82.2	90.4	88.0	80.3	76.2	80.1	89.4	99.1	94.8
	HDR-10	86.1	90.6	94.9	82.0	85.9	70.3	74.4	85.1	79.1	96.3
	HDR-11	91.8	81.2	92.2	83.8	80.8	69.3	94.5	91.5	96.6	93.3
	LCS2	103.5	91.1	94.8	90.0	102.3	103.6	100.4	94.4	94.7	96.2
Warfarin	LCS1	89.8	93.1	92.4	99.9	67.2	84.8	92.1	96.3	115.5	90.4
	HDR-1	126.2	128.4	141.1	141.1	130.8	128.6	200.5	148.0	236.3	185.6
	HDR-2	118.5	123.6	130.5	144.8	117.9	117.4	189.1	149.8	158.0	171.6
	HDR-3	127.5	121.3	126.8	137.9	116.5	121.7	182.5	148.5	191.4	153.7
	HDR-4	121.7	131.4	121.8	137.3	111.3	107.3	159.5	137.5	167.3	140.8
	HDR-5	124.6	126.3	133.4	135.0	112.1	113.7	170.8	138.4	184.2	144.0

Working Stock Star	ndard ID	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 06-30-16	WSS 07-15-16	WSS-07-25-16	WSS 08-15-16	WSS 08-29-16	WSS 09-07-16	WSS-09-21-16
Analytic	ical Date	7/1/16	7/3/16	7/5/16	7/8/16	7/17/16	7/31/16	8/15/16	8/30/16	9/7/16	9/21/16
Days Since Spike		0	2	4	7	16	30	45	60	69	84
Compound Sample	e Name										
HDR-6		128.6	130.9	121.0	135.6	113.2	122.6	173.7	144.5	204.8	144.4
HDR-7		123.3	136.6	129.9	135.4	116.6	117.3	163.1	141.9	180.5	151.8
HDR-8		128.0	119.9	124.0	139.0	111.8	116.8	153.8	139.6	183.5	145.7
HDR-9		120.1	123.6	124.3	134.7	117.8	122.9	165.0	142.9	208.6	150.6
HDR-10	0	124.0	123.2	124.9	126.5	116.3	118.7	155.5	163.3	207.1	170.7
HDR-11	1	130.4	127.6	117.2	125.0	109.9	118.3	168.8	146.6	208.8	139.7
LCS2		80.9	80.1	77.7	92.2	61.4	73.2	99.0	105.3	99.4	89.9

Appendix D Laboratory Analytical Reports

(separate files)

February 7, 2017

This page intentionally left blank.