LOTT Clean Water Alliance Reclaimed Water Infiltration Study

SCREENING-LEVEL EVALUATION FOR THE ECOLOGICAL RISK ASSESSMENT: PROBLEM FORMULATION STEP OF THE ASSESSMENT PROCESS

FINAL

Prepared for

LOTT Clean Water Alliance 500 Adams Street NE Olympia, WA

May 28, 2020

Prepared by:

200 West Mercer Street, Suite 401 • Seattle, Washington • 98119

Table of Contents

Та	ble of Conte	nts	i
Та	bles		ii
Fi	gures		ii
Acronyms			
1	Introduction	n	1
2	Site Descrip		3
3	Ecological S 3.1 HABIT 3.1.1 3.1.2 3.2 SITE S 3.2.1 3.2.2	Setting and Receptors	11 11 12 14 14 18 21 22 22 22 22 22 22 22
4	Receptors of	of Concern	25
5		Site Model ntial Exposure Pathways isment Endpoints	27 27 28
6	6.1 AVAII 6.2 METH 6.2.1 6.2.2 6.2.3 6.3 RESUL	Derivation of screening-level benchmarks Comparison to screening-level benchmarks Identification of persistent and bioaccumulative compounds	31 31 32 32 41 41 42 50
7	Summary		53
8	References		57

Appendix A. Photos from Woodland and McAllister Creeks Site Visits

Appendix B. Ecological Receptors

Appendix C. Data Appendix (separate Excel document)

Tables

Table 3-1.	Dominant vegetation observed at Woodland Creek near Beatty Springs	15
Table 3-2.	Birds observed at Woodland Creek near Beatty Springs	16
Table 3-3.	Dominant vegetation observed at Woodland Creek in Pleasant Glade Park	17
Table 3-4.	Birds observed at Woodland Creek at Pleasant Glade Park	18
Table 3-5.	Dominant vegetation observed at McAllister Creek at the Steilacoom Road Southeast	19
Table 3-6.	Birds observed at McAllister Creek at the Steilacoom Road Southeast	19
Table 3-7.	Dominant vegetation observed at McAllister Creek at the Martin Way East	20
Table 3-8.	Birds observed at McAllister Creek at the Martin Way East	21
Table 5-1.	Assessment endpoints for Woodland and McAllister Creeks	29
Table 6-1.	Screening-level benchmarks for COIs detected in reclaimed water or porewater	33
Table 6-2.	Results of COPEC screening process, COIs detected in reclaimed water or porewater	43
Table 6-3.	Results of persistence and bioaccumulation screen, COIs detected in reclaimed water or porewater	47
Table 7-1.	COPECs retained based on benchmark exceedances	53
Table 7-2.	COPECs retained based on bioaccumulation potential	54

Figures

Figure 1. Woodland Creek vicinity map	5
Figure 2. McAllister Creek vicinity map	9
Figure 3. Exposure pathway model for Woodland and McAllister Creeks	28

FINAL

Acronyms

BAF	biogenergy lation factor	
	bioaccumulation factor	
BCF bioconcentration factor		
BIRWP Budd Inlet Reclaimed Water Plant		
BITP Budd Inlet Treatment Plant		
BPA bisphenol A		
CAS	chemical abstracts service	
COI	chemical of interest	
COPEC	chemical of potential ecological concern	
CSM	conceptual site model	
DACT	2-Chloro-4,6-diamino-1,3,5-triazine	
DBCP	dibromochloropropane	
DEA	diethanolamine	
DEET N,N-Diethyl-m-toluamide		
DF detection frequency		
ECx	concentration that causes a non-lethal effect in x% of an exposed population	
Ecology Washington State Department of Ecology		
ECOSAR	Ecological Structure Activity Relationships	
EDB	ethylene dibromide	
EF	exceedance factor	
EPA	US Environmental Protection Agency	
EPI	Estimation Program Interface	
ERA	ecological risk assessment	
I-5	Interstate 5	
LOEC	lowest-observed-effect concentration	
LOTT	LOTT Clean Water Alliance	
LWD	large woody debris	
МАТС	maximum acceptable toxic concentration	

Wind ward

MWRWP	Martin Way Reclaimed Water Plant	
NDMA	A N-Nitroso dimethylamine	
NOEC	no-observed-effect concentration	
NSAID	nonsteroidal anti-inflammatory drug	
NWR National Wildlife Refuge		
PBDE	polybrominated diephenyl	
PFAS	per- and polyfluoralkyl substances	
PFBA	perfluoro butanoic acid	
PFNA	perfluoro-n-nonanoic acid	
PFOA	perfluoro octanoic acid	
PNEC	probable no-effect concentration	
PPCP pharmaceutical and personal care product		
ROC receptor of concern		
RWIS Reclaimed Water Infiltration Study		
SMILES	Simplified Molecular-Input Line-Entry System	
TCEP tris(2-carboxyethyl)phosphine		
ТСРР	tris(chloropropyl)phosphate	
TDCPP	tris(1,3-dichloro-2-propyl)phosphate	
TMDL	total maximum daily load	
TRV	toxicity reference value	
TSCA Toxic Substances Control Act		
USFWS US Fish and Wildlife Service		
WDFW	Washington Department of Fish and Wildlife	
Windward	Windward Environmental LLC	
WRIA	Water Resource Inventory Area	

1 Introduction

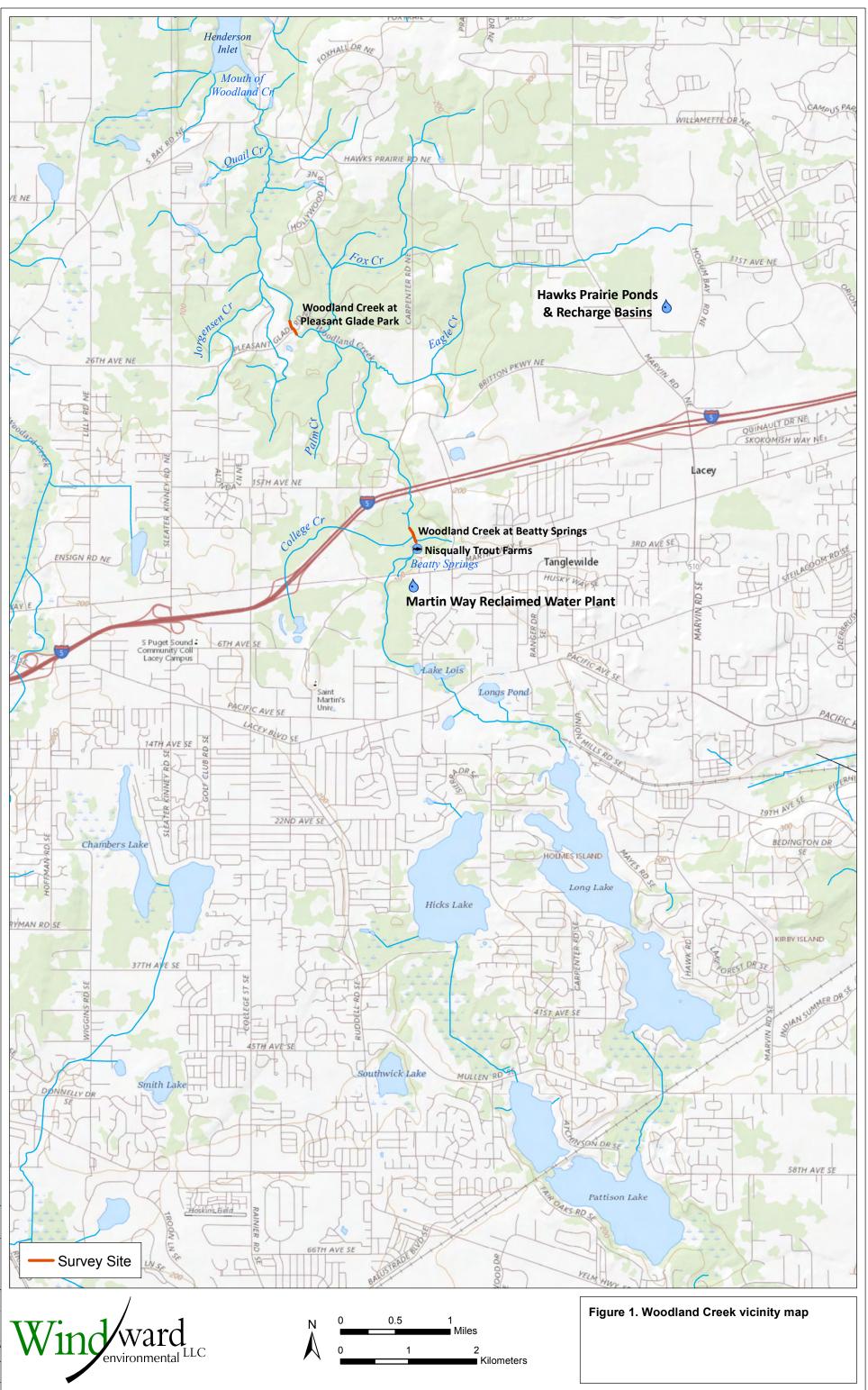
The LOTT Clean Water Alliance (LOTT) is a public, non-profit entity responsible for providing wastewater treatment and management for the Cities of Lacey, Olympia, and Tumwater in northern Thurston County, Washington. LOTT's long-range plan relies on the production and beneficial use of reclaimed water, including the infiltration of unused reclaimed water into groundwater, to meet the urban area's growing demand for wastewater management.

To address community questions about residual chemicals that may remain in reclaimed water, LOTT is undertaking a multi-year reclaimed water infiltration study (RWIS). The RWIS is intended to evaluate whether there are potential risks associated with the use of reclaimed water for groundwater replenishment caused by a targeted list of pharmaceutical chemicals or chemicals found in household and personal care products, herein referred to as "residual chemicals." One of the RWIS tasks (Task 3) involves conducting an ecological risk assessment (ERA), including a screening-level evaluation that applies conservative assumptions to identify those chemicals that warrant a more detailed evaluation. The results of the problem formulation, a component of the ERA, are presented in this document. The risk characterization step of the ERA will be conducted for chemicals warranting further evaluation based on the screening-level evaluation.

The problem formulation was conducted using a standard approach in accordance with both national and regional US Environmental Protection Agency (EPA) guidance (EPA 1998, 1997a, b).

This technical memorandum is organized into the following sections:

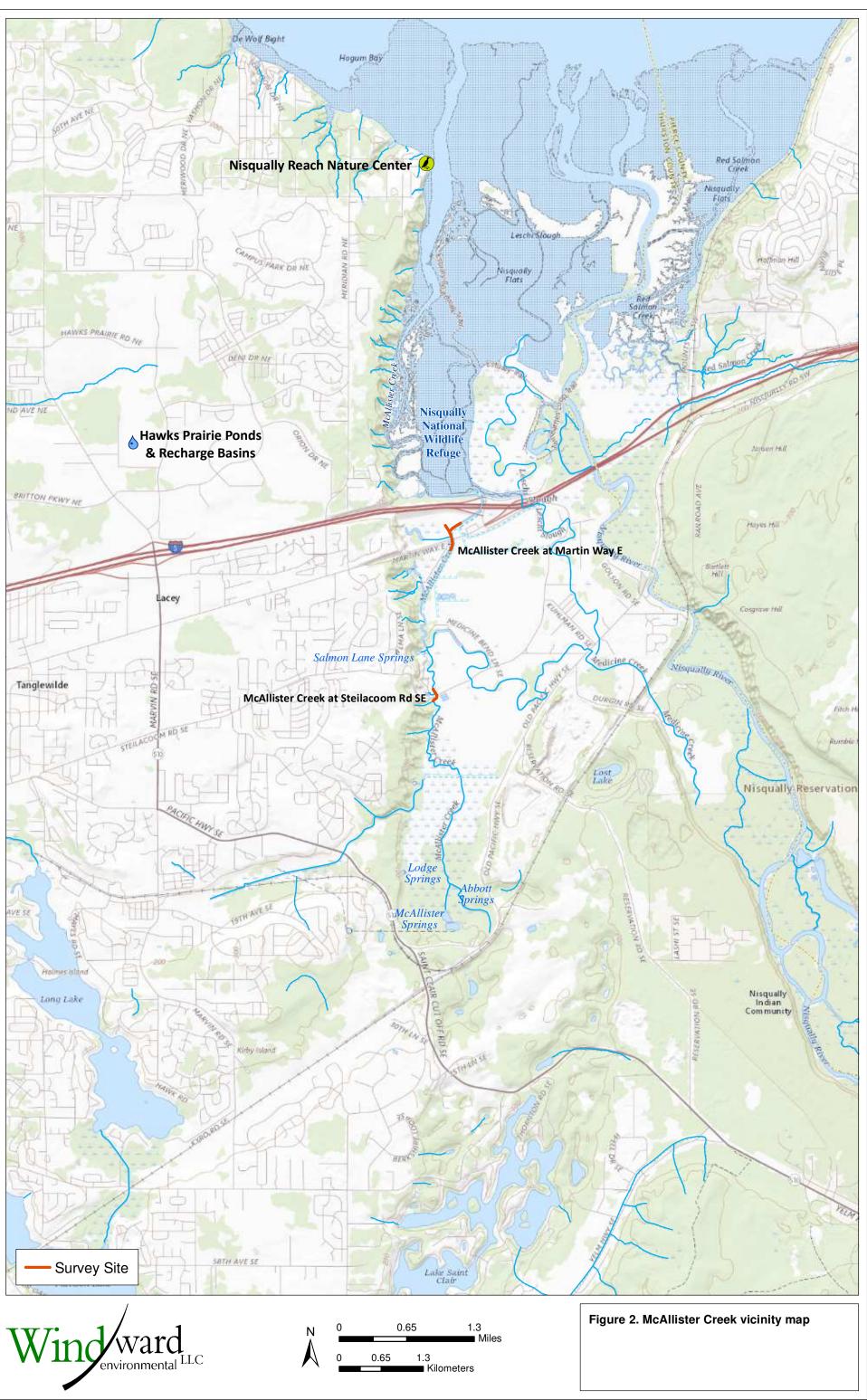
- Section 1 introduction
- Section 2 site description
- Section 3 ecological setting and receptors
- Section 4 identification of receptors of concern (ROCs)
- Section 5 ecological conceptual site model (CSM)
- Section 6 methods and results for the screen of chemicals of interest (COIs) to determine chemicals of potential ecological concern (COPECs)
- Section 7 references


2 Site Description

LOTT produces Class A reclaimed water at two facilities. At the Budd Inlet Treatment Plant/Budd Inlet Reclaimed Water Plant (BITP/BIRWP) in Olympia, final effluent already treated to meet advanced secondary standards is further treated through sand filtration and additional disinfection. Class A reclaimed water from this facility is used at a variety of sites in Olympia and Tumwater for irrigation and other non-potable purposes. The Martin Way Reclaimed Water Plant (MWRWP) is located north of Lacey, between the Woodland Creek and McAllister Creek drainages. MWRWP has produced reclaimed water from raw wastewater using membrane bioreactor technology since 2006. The majority of reclaimed water produced at MWRWP is used for groundwater recharge at two locations: the Hawks Prairie Ponds and Recharge Basins site in northeast Lacey, and the Woodland Creek Groundwater Recharge Facility located at the Woodland Creek Community Park in Lacey. The Hawks Prairie Ponds and Recharge Basins site is owned and operated by LOTT and is the primary study area for the RWIS. There, reclaimed water from MWRWP is conveyed through a series of five constructed wetland ponds before flowing into groundwater recharge basins (HDR 2017c). The site is open to the public, and the environs are equipped with educational information about reclaimed water, as well as a park-like setting with walking trails and benches.

From the recharge basins, reclaimed water infiltrates through the soil and into groundwater. Groundwater in the Shallow Aquifer at the Hawks Prairie site flows predominantly to the southwest, with Woodland Creek being a primary point of discharge (HDR 2017a). A portion of groundwater may migrate from the Shallow Aquifer to the Sea-Level Aquifer and Deep Aquifer, which from the Hawks Prairie site primarily flow toward McAllister Creek and Puget Sound, respectively. Because the Woodland Creek and McAllister Creek watersheds are downgradient of the Hawks Prairie Ponds and Recharge Basins, the habitat and associated ecological receptors at these two creeks are the basis for Sections 3 through 5 of this technical memorandum.

Woodland Creek flows south-to-north for approximately 11 miles through Thurston County, Washington (Figure 1). The headwaters are composed of a series of water bodies (Hicks Lake, Pattison Lake, Long Lake, Goose Pond, and Lake Lois) and form an intermittent stream until the Beatty Springs and College Creek convergence; there, the waters become a substantial perennial channel flowing northward into Henderson Inlet. Tributaries that contribute to the streamflow include College (at river mile 2.6), Eagle, Palm, Fox, Jorgensen, and Quail Creeks. The last mile of Woodland Creek is tidally influenced by Henderson Inlet.



Prepared by craigh, 7/18/2019; W:\Projects\LOTT\GIS\Maps and Analyses\7076 Woodland Cr Basin.mxd

McAllister Creek also flows south-to-north for approximately 6 miles through northeast Thurston County (Figure 2). The creek is fed by a series of springs, including McAllister,¹ Abbott, and Lodge Springs; numerous small seeps and springs along its left (west) bank; and drainage from adjacent agricultural fields and residential areas (Thurston County 1994). McAllister Springs, in turn, is fed largely by groundwater originating from Lake St. Claire, located approximately 1.5 miles south of McAllister Springs. The entirety of McAllister Creek flows through very low-elevation areas, and the creek is tidally influenced all the way to its source. McAllister Creek discharges to the Puget Sound via a broad estuarine lagoon located within the Nisqually National Wildlife Refuge (NWR).

¹ McAllister Springs was formerly the main source of drinking water for Olympia (Thurston County 1994).

3 Ecological Setting and Receptors

3.1 HABITAT

This section describes the habitats at Woodland and McAllister Creeks and the site surveys conducted at both watersheds.

3.1.1 Woodland Creek

The Woodland Creek watershed covers 29.7 square miles. The series of water bodies (Hicks, Pattison, Long, and Lois Lakes and Goose Pond) and associated wetland complexes at the headwaters of Woodland Creek are fed from groundwater (Figure 1). North of Lake Lois, Woodland Creek becomes an intermittent stream until it reaches Beatty Springs, just north of which Woodland Creek flows through the Nisqually Trout Farm. The confluence of Beatty Springs and College Creek forms a perennial stream with several other tributaries that continues to Henderson Inlet (Figure 1).

According to Thurston County (2007), 90% of the Woodland Creek basin lies within Lacey or Olympia urban growth areas. Land cover data from 2005 satellite imagery indicate that 28% of the watershed was given over to urban land uses at that time, with commercial and residential development expected to increase within the urban growth area boundaries in the then-near future. Using land cover data, the Thurston Regional Planning Council estimated that as of 2010, the watershed included 22% impervious surface area cover and 40% forest cover (Tabbutt and Ambrogi 2013). Land use designations within the watershed currently include moderate- and high-density residential, light industrial, and commercial, as well as some agricultural lands (HDR 2017b; Thurston County 2019). Land uses directly adjacent to Woodland Creek include natural; public park; open space; and rural-, low-, and moderate-density residential land (HDR 2017b; Thurston County 2019).

Most of Woodland Creek below Lake Lois (see Figure 1) is included on Washington State's 303(d) impaired waters list due to high levels of fecal coliform bacteria (Ecology 2017). An EPA-approved total maximum daily load (TMDL) plan for fecal coliform bacteria is in place to help restore the water body to more natural conditions. Woodland Creek is also included on the 303(d) impaired waters list for temperature, dissolved oxygen, and instream flow (Ecology 2019).

The Woodland Creek watershed accounts for 12% of the area within Water Resource Inventory Area (WRIA) 13. WRIA 13 is the most developed watershed in Thurston County and has the worst habitat condition (Thurston County 2013a).² However, portions of Woodland Creek north of Lacey have good habitat condition, and

² Habitat condition as designated using Washington Department of Fish and Wildlife (WDFW) habitat assessments.

Woodland Creek's riparian vegetation appears relatively unmodified despite encroaching development. An assessment of all streams within WRIA 13 rated Woodland Creek's invertebrate community as "good/fair-fair" using a benthic index of biotic integrity metrics averaged from 1999 to 2013 (City of Olympia 2018). A 2004 WRIA assessment described Woodland Creek and its associated tributaries as good salmonid spawning and rearing habitats with good estuary connectivity, fair fish passage, and good off-channel habitat (Thurston County 2004). Areas of Woodland Creek with high and moderate fish habitat resources were also identified in 2007 (Thurston County 2007), although it is possible that conditions have changed, since these data were published more than a decade ago.

Woodland Creek provides a hydrologic source for several wetland complexes within its reach that include scrub-shrub and forested wetlands and afford a variety of native vegetation. Woodland Creek contains an assortment of stream bed substrates, ranging from gravel and cobble to primarily coarse sand. Topography of the creek begins with rolling flat hills, which eventually become a shallow ravine setting before the creek reaches the estuary at the mouth of Henderson Inlet.

3.1.2 McAllister Creek

The McAllister Creek watershed covers 7.2 square miles (Thurston County 1994). The creek's drainage basin has a low gradient and low elevation, and the creek channel itself is tidally influenced all the way to its source (Thurston County 2013c). A series of springs and forested wetlands that serve as the headwaters of the creek is fed from groundwater (Figure 2). There are two small tributaries to McAllister Creek: Little McAllister Creek and Hartman Creek. While most of McAllister Creek has a relatively narrow floodplain, the portion of the creek north of Interstate 5 (I-5) has a much wider and more complex floodplain, as it merges with the Nisqually River floodplain and delta within the Nisqually NWR (Thurston County 2013c).

In 2009, land cover data from satellite imagery indicated that 21% of the McAllister Creek watershed south of I-5 was developed (i.e., covered by the built environment). Approximately 30% of the watershed (south of I-5) was covered by forest, 34% by scrub-shrub and understory vegetation, 11% by scrub-shrub/wetlands, and approximately 10% by grasses; an additional 5% was covered by wetlands, bare earth, tilled earth, or water (Thurston County 2013b).

Water quality in McAllister Creek is listed as "fair" and often does not meet water quality standards for fecal coliform, pH, and dissolved oxygen (Thurston County 2013c). Sources of water pollution to the creek include septic systems, agricultural runoff, and stormwater runoff. In 2002 and 2003, the Washington State Department of Ecology (Ecology) conducted a TMDL study for dissolved oxygen and fecal coliform bacteria within McAllister Creek (Ecology 2005). As water from many of the sampling locations did not meet fecal coliform bacteria water quality standards, a TMDL was established for McAllister Creek starting approximately 0.5 miles upstream from Martin

Way (at river mile 4.3). Dissolved oxygen levels in the creek were also found to be low, but this was attributed to natural conditions such as aquatic plant growth, low dissolved oxygen in groundwater discharging to the creek, physical conditions impeding aeration of the water, and influences from wetlands in the basin. Control of nutrient inputs to the creek was recommended, as was investigation into the high nitrate+nitrite nitrogen levels detected in groundwater.

The upper portion of McAllister Creek near McAllister Springs flows through forested and forested wetland habitats. The stream substrate in this reach of the creek consists of good-quality spawning gravels (Thurston County 1994).

Between its headwaters and the estuary, McAllister Creek runs through forested wetland habitat and agricultural/pasture and residential land, as well as under roadways; commercial development includes restaurants and gas stations concentrated around Martin Way East and the I-5 corridor (Figure 2). Dikes and tide gates³ line the reach of the creek that flows through agricultural/pasture lands (primarily south of the Steilacoom Road Southeast bridge), and there is little riparian woody vegetation (Thurston County 1994, 2013c). Agricultural drainage ditches discharge to the creek on both sides in this area, and the stream bed substrate consists predominantly of muck and peat, with high organic matter content. Water in the creek in this area moves slowly due to influences from the tide, and there are no riffles or pieces of large woody debris (LWD).

North of the Steilacoom Road Southeast bridge, McAllister Creek flows past more agricultural/pasture land (to the east of the creek) and residential land (to the west of the creek). There is some forested riparian vegetation along this reach of the creek, particularly on the west side (Figure 2). At approximately river mile 4.3, McAllister Creek enters a series of diversion channels that convey the creek under Martin Way East and I-5; rip-rap lines the diversion channels through much of this area (Ecology 2005). There is some riparian vegetation in this reach of the creek but little overhanging vegetation. Land uses here include an RV park, restaurants, gas stations, an auto shop, and roadways. Stormwater from Martin Way East and I-5 discharges to McAllister Creek in this reach. The creek re-enters its natural channel north of I-5 as it enters the Nisqually NWR.

The majority of the McAllister Creek basin is located in the Nisqually WRIA (WRIA 11),⁴ and its watershed is located immediately west of the Nisqually River watershed (Thurston County 2013c). The McAllister Creek delta joins the Nisqually River delta complex within a broad estuarine lagoon in the Nisqually NWR (Thurston County 1994). The lagoon contains a network of braided channels and extensive

³ These dikes and gates are intended to prevent saltwater from flowing into adjacent pasture lands (Ecology 2005).

⁴ A small portion of the basin is located within WRIA 13.

mudflats at low tide. The delta consists of thick deposits of alternating clay, silt, and sand layers and supports estuarine wetland plant communities, while the creek mouth is very sandy and supports eelgrass beds (Woo et al. 2017; Thurston County 1994).

There are natural runs of chum, coho, and Chinook salmon and steelhead and anadromous cutthroat trout in McAllister Creek; however, spawning occurs only in the upper reaches of the creek due to poor habitat conditions and influences of the salt wedge in the lower reaches of the creek (Ecology 2005). Invertebrate monitoring conducted in association with restoration efforts within the Nisqually NWR included the McAllister Creek delta. These studies found that eelgrass beds in the McAllister Creek delta supported high densities of crustaceans (such as copepods and amphipods), as well as polychaete and nematode worms (Woo et al. 2016 as cited in Woo et al. 2017). The delta of McAllister Creek was also found to be highly accessible to juvenile Chinook salmon (Thurston County 2013c).

3.2 SITE SURVEY RESULTS

A qualitative site survey was conducted at two locations along the perennially flowing segment of Woodland Creek and two locations along McAllister Creek⁵ to confirm and/or supplement the available data.

The two survey sites at Woodland Creek - one near Beatty Springs downstream of the Nisqually Trout Farm, and one near Pleasant Glade Park downstream of Fox Creek – were selected because they were near groundwater discharge monitoring locations (HDR 2017b) and easy to access. Observations from the site surveys near Beatty Springs and in Pleasant Glade Park are presented in Section 3.2.1.

The two survey sites at McAllister Creek – one at the overpass along Steilacoom Road Southeast south of Salmon Lane Springs, and one at the overpass along Martin Road East south of I-5 – were selected because they were the only publicly accessible locations along the creek. Access to McAllister Creek is restricted, as it runs through private residential and agricultural properties before entering the Nisqually NWR. Observations from the site surveys near the Steilacoom Road Southeast and Martin Road East overpasses are presented in Section 3.2.2.

3.2.1 Woodland Creek

3.2.1.1 **Beatty Springs**

A 500-ft section of Woodland Creek downstream of Beatty Springs and the Nisqually Trout Farm was surveyed on June 12, 2019, for vegetation and overstory density,

⁵ Access to McAllister Creek was attempted from two locations north of I-5 but was restricted by the Nisqually NWR boundaries. The Nisqually NWR (north of I-5) and the Nisqually Reach Nature Center (north of the McAllister Creek outlet) were visited to gain access to the creek. Neither provided closer access to the creek than the two surveyed areas.

habitat, and wildlife presence. The survey site was located just north of where groundwater inputs from Beatty Springs and College Creek form the established perennial stream of Woodland Creek (Figure 1).

Woodland Creek near Beatty Springs is surrounded by dense woodland forest that provides a variety of habitats for aquatic and woodland species. Overstory density was measured with a densiometer at the 0-, 250-, and 500-ft points along the 500-ft section of the stream surveyed, resulting in an estimated 75 to 91% overstory density. Dominant vegetation observed during the site survey is presented in Table 3-1.

Vegetation Layer	Common Name	Scientific Name
	bedstraw	Galium aparine
	field horsetail	Equisetum arvense
	giant horsetail	Equisetum telmateia
	lily-of-the-valley	Convallaria majalis
Herbaceous	Pacific waterleaf	Hydrophyllum tenuipes
Tierbaceous	slough sedge	Carex obnupta
	soft rush	Juncus effusus
	stinging nettle	Urtica dioica
	sword fern	Polystichum munitum
	western bracken fern	Pteridium aquilinum
	bittersweet nightshade	Solanum dulcamara
	Himalayan blackberry	Rubus armeniacus
	osoberry	Oemleria cerasiformis
Shrub	salmonberry	Rubus spectabilis
	snowberry	Symphoricarpos albus
	tall Oregon grape	Mahonia aquifolium
	vine maple	Acer circinatum
	black hawthorn	Crataegus douglasii
	Douglas fir	Pseudotsuga menziesii
Tree	Oregon ash	Fraxinus latifolia
	red alder	Alnus rubra
	western red-cedar	Thuja plicata

Table 3-1. Dominant vegetation observed at Woodland Creek near Beatty Springs

Although fish were not observed during the survey, instream features providing suitable fish habitat – such as aquatic vegetation, LWD, and pools and riffles – were commonly observed. The LWD was often complex, with several pieces and anchored within the shore, offering refuge and rearing habitats for various fish species. Surveys conducted by Johnson and Caldwell (1992) found a pool-to-riffle ratio of 41:59, another indicator of suitable fish habitat.

Several bird species, mostly inhabitants of woodland and/or riparian areas, were observed (i.e., seen or heard) during the site survey near Beatty Springs. While no birds of prey were observed during the site visit, a hawk feather (likely from a sharp-shinned [Accipiter striatus] or Cooper's hawk [Accipiter cooperii]) was found on the ground near Woodland Creek at the Beatty Spring site. Both of these hawk species inhabit forested areas and prey upon smaller birds (The Cornell Lab of Ornithology 2011). Table 3-2 presents the birds observed during the site visit to Woodland Creek near Beatty Springs.

Common Name	Scientific Name
American crow	Corvus brachyrhynchos
American goldfinch	Spinus tristis
American robin	Turdus migratorius
Brown creeper	Certhia americana
Cedar waxwing	Bombycilla cedrorum
Chickadees	Poecile spp.
Song sparrow	Melospiza melodia
Spotted towhee	Pipilo maculatus
Swainson's thrush	Catharus ustulatus
Western wood-pewee	Contopus sordidulus

Table 3-2. Birds observed at Woodland Creek near Beatty Springs

Other wildlife observed during the site visit included invertebrates such as midges (Order: Diptera), caddisflies (Order: Trichoptera), stoneflies (Order: Plecoptera), and pouch snails (*Physa* spp.). No vertebrates other than birds were observed, but tracks from common raccoon (Procyon lotor) and unidentified species of deer were present along the creek bed. Photos from the site survey near Beatty Springs are provided in Appendix A.

3.2.1.2 Pleasant Glade Park

A 500-ft section of Woodland Creek in Pleasant Glade Park was surveyed on June 12, 2019, for vegetation and overstory density, habitat, and wildlife presence. Woodland Creek in Pleasant Glade Park is surrounded by low-density residential properties. The surveyed area is located just downstream from Fox Creek below the Pleasant Glade Road Northeast bridge in a forested ravine with steep banks on both sides; the survey site provides habitat for both aquatic and woodland species (Figure 1). Overstory density was measured with a densiometer at the 0-, 250-, and 500-ft points along the 500-ft section of the stream surveyed, resulting in an estimated 94 to 98% overstory density. Dominant vegetation observed during the site survey is presented in Table 3-3.

Vegetation Layer	Common Name	Scientific Name
	bedstraw	Galium aparine
	deer fern	Blechnum spicant
	herb Robert	Geranium robertianum
	jewelweed	Impatiens capensis
	Pacific bleeding heart	Dicentra formosa
Herbaceous	Pacific waterleaf	Hydrophyllum tenuipes
nerbaceous	reed canary-grass	Phalaris arundinacea
	stinging nettle	Urtica dioica
	sword fern	Polystitchum mutinium
	water parsley	Oenanthe sarmentosa
	western skunk cabbage	Lysichiton americanus
	youth-on-age	Tolmiea menziesii
	English ivy	Hedera helix
	English laurel	Prunus laurocerasus
Shrub	osoberry	Oemleria cerasiformis
	salmonberry	Rubus spectabilis
	vine maple	Acer circinatum
	Douglas fir	Psuedotsuga menziesii
Tree	Oregon ash	Fraxinus latifolia
TIEE	red alder	Alnus rubra
	western red cedar	Thuja plicata

Table 3-3. Dominant vegetation observed at Woodland Creek in Pleasant Glade Park

Although fish were not observed during the survey, instream features providing suitable fish habitat – such as LWD; cobble, gravel, and sandy substrates for spawning; and pools and riffles - were commonly observed. LWD in Pleasant Glade Park, although less prevalent than at the Beatty Springs site, was composed of larger logs and root wads. Channel flow in Pleasant Glade Park was wider but included interstitial gravel and sand bars, large pools, and small islands. Surveys conducted by Johnson and Caldwell (1992) found a creek-wide pool-to-riffle ratio of 41:59, another indicator of suitable fish habitat.

Several bird species, mostly inhabitants of woodland and/or riparian areas, were observed (i.e., seen or heard) during the site survey. In addition, woodpecker holes were observed in a snag standing near the creek. Table 3-4 presents the bird species observed during the Woodland Creek in Pleasant Glade Park site visit.

Common Name	Scientific Name
American robin	Turdus migratorius
Chickadees	Poecile spp.
Evening grosbeak	Coccothraustes vespertinus
Pacific-slope flycatcher	Empidonax difficilis
Rufous hummingbird	Selasphorus rufus
Song sparrow	Melospiza melodia
Swainson's thrush	Catharus ustulatus
Western wood-pewee	Contopus sordidulus
Wilson's warbler	Cardellina pusilla
Woodpecker (holes)	na

na - not applicable

Other wildlife observed during the site visit included invertebrates such as midges and mosquitos (Order: Diptera), water striders (Order: Hemiptera), caddisflies (Order: Trichoptera), and stoneflies (Order: Plecoptera). Besides birds, vertebrate wildlife observed included the common garter snake (*Thamnophis sirtalis*) along the creek bank, unidentified chipmunks and squirrels in the riparian vegetation, and a muskrat (*Ondatra zibethicus*) swimming in the creek. Tracks from common raccoon were also present along the creek bed. Photos from the site survey in Pleasant Glade Park are provided in Appendix A.

3.2.2 McAllister Creek

3.2.2.1 Steilacoom Road Southeast

Due to private property restrictions and bends in the creek that limited the line-of-sight, only the 350-ft section of McAllister Creek that was visible from Steilacoom Road Southeast was surveyed on March 4, 2020. The survey site, which was surveyed for vegetation, habitat, and wildlife presence, was located at the overpass at Steilacoom Road Southeast, just south of Salmon Lane Springs (Figure 2).

McAllister Creek at the Steilacoom Road Southeast bridge crossing is surrounded by low-density residential properties and agricultural/pasture fields. The creek mostly runs through private properties and is flanked by intermittent narrow buffers of riparian vegetation, ornamental/landscape vegetation, and open farmland. Overstory density was not measured due to creek access limitations, but the entire section of the creek surveyed had little to no canopy cover, providing marginal to low wildlife habitat. Dominant vegetation observed during site survey is presented in Table 3-5.

Vegetation Layer	Common Name	Scientific Name
Herbaceous	English ivy	Hedera helix
	reed canary grass	Phalaris arundinacea,
	scouring rush	Equisetum hyemale
	Sword fern	Polystitchum mutinium
Shrub	English laurel	Prunus laurocerasus
	Himalayan blackberry	Rubus armeniacus
	osoberry	Oemleria cerasiformis
	salmonberry	Rubus spectabilis
Tree	bigleaf maple	Acer macrophyllum
	Douglas fir	Psuedotsuga menziesii
	red alder	Alnus rubra
	western red cedar	Thuja plicata

Table 3-5. Dominant vegetation observed at McAllister Creek at the Steilacoom **Road Southeast**

Fish, benthic invertebrates, and instream features were also not observed during the survey due to creek access limitations.

Several bird species - primarily ducks and inhabitants of developed, open woodland, and/or riparian areas – were observed (i.e., seen or heard) from the overpass during the survey at the Steilacoom Road Southeast site. Common goldeneyes (Bucephala clangula), common mergansers (Mergus merganser), and mallards (Anas platyrhynchos) were observed in the creek. A bald eagle (Haliaeetus leucocephalus) was observed in an adjacent agricultural field, and owl pellets were seen during the site visit. Table 3-6 presents the birds observed during the site visit to McAllister Creek at Steilacoom Road Southeast.

Table 3-6. Birds observed at McAllister Creek a	at the Steilacoom Road Southeast
---	----------------------------------

Common Name	Scientific Name
American crow	Corvus brachyrhynchos
Anna's hummingbird	Calypte anna
Bald eagle	Haliaeetus leucocephalus
Black-capped chickadee	Poecile atricapillus (Parus atricapillus)
Common goldeneye	Bucephala clangula
Common merganser	Mergus merganser
Mallard	Anas platyrhynchos
Mourning dove	Zenaida macroura
Red-breasted nuthatch	Sitta canadensis
Red-shafted flicker	Colaptes auratus

Wind ward

Common Name	Scientific Name
Red-winged blackbird	Haliaeetus leucocephalus
Song sparrow	Melospiza melodia
Starling	Sturnus vulgaris
Steller's jay	Cyanocitta stelleri

Other wildlife observed during the site visit included an unidentified species of chipmunk and eastern gray squirrel (Sciurus carolinensis). The carcass of a long-tailed weasel (Mustela frenata) was discovered at the overpass, and an unidentified frog call was heard nearby. Photos from the site survey at Steilacoom Road Southeast are provided in Appendix A.

3.2.2.2 Martin Way East

An 800-ft section of McAllister Creek that was visible at Martin Way East was surveyed on March 4, 2020, for vegetation, habitat, and wildlife presence. The survey site was located at the overpass along Martin Way East, adjacent to a mixed business and commercial center to the south of I-5 and the Nisqually NWR (Figure 2).

McAllister Creek at the Martin Way East overpass is surrounded by an RV park and I-5 to the north, a mixed business and commercial center to the east, and agricultural fields to the south, west, and east. The creek runs through these private and commercial properties and under I-5 before discharging into the Nisqually NWR to the north. Intermittent, narrow buffers of riparian vegetation are present but the majority of the surveyed area is developed and provides little to no wildlife habitat. Although the overstory density could not be measured due to creek access limitations, no canopy cover was seen from Martin Way East based on visual observations of the surveyed area. Dominant vegetation observed during the site survey is presented in Table 3-7.

Vegetation Layer	Common Name	Scientific Name
Herbaceous	sedge (unidentified)	Carex spp.
Herbaceous	sword fern	Polystitchum mutinium
	Himalayan blackberry	Rubus armeniacus
Shrub	oceanspray	Holodiscus discolor
	osoberry	Oemleria cerasiformis
	Scotch broom	Cytisus scoparius
	tall Oregon grape	Mahonia aquifolium
	trailing blackberry	Rubus ursinus
Tree	black cottonwood	Populus trichocarpa
	Douglas fir	Psuedotsuga menziesii
	red alder	Alnus rubra

Table 3-7. Dominant vegetation observed at McAllister Creek at the Martin Way East

Fish, benthic invertebrates, and in-stream features could not be documented during the survey due to creek access limitations.

Few bird species – mostly those that inhabit developed, open woodland and/or riparian areas – were observed (i.e., seen or heard) from the overpass during the site survey at Martin Way East (Table 3-8). Among the bird species seen was a Cooper's hawk [*Accipiter cooperii*]), which was observed in the shrubs; this species inhabits forested areas and preys on smaller birds (The Cornell Lab of Ornithology 2011). The ability to hear birds was hindered at this site by traffic noise from Martin Way East.

Common Name	Scientific Name
Brown creeper	Certhia americana
Common goldeneye	Bucephala clangula
Cooper's hawk	Accipiter cooperii
Red-breasted sapsucker	Sphyrapicus ruber
Red-shafted flicker	Colaptes auratus
Starling	Sturnus vulgaris
Steller's jay	Cyanocitta stelleri

Table 3-8. Birds observed at McAllister Creek at the Martin Way East

No other wildlife was observed during the site visit, but tracks from common raccoon and an unidentified canine (possibly coyote) were present along the creek. Photos from the site survey at Martin Way East are provided in Appendix A.

3.3 ECOLOGICAL RECEPTORS

This section describes the primary ecological receptors of the Woodland Creek and McAllister Creek areas, including the benthic invertebrate community, fish, and aquatic-dependent birds, herptiles, and mammals. Aquatic-dependent birds, herptiles, and mammals are those that obtain prey dependent upon the aquatic environment for a least a portion of their life cycle. Information on ecological receptors was obtained from the most recently published sources available and supplemented with data from the 2019 and 2020 site surveys described in Section 3.2. Most of the data for species observed in Woodland Creek are from a site survey conducted more than 40 years ago (Dobos et al. 1977), so it should be noted that these data may not represent current conditions in the creek. Additionally, because site-specific wildlife data for McAllister Creek were not available, many of the species listed in wildlife inventories obtained from Thurston County (1994) and the US Fish and Wildlife Service (USFWS) (2005) are associated with the Nisqually NWR, where the creek discharges into Puget Sound.

3.3.1 Benthic invertebrate community

Dobos et al. (1977) provided the most complete benthic invertebrate community data for the Woodland Creek study area, which they collected from four survey sites.

Appendix B (Table B1) presents these benthic community data supplemented with data from Haub et al. (2018) and the site visit by Windward Environmental LLC (Windward) in June 2019. Thurston County (1994) provided the benthic invertebrate community data for the McAllister Creek study area.

3.3.2 Fish community

Appendix B (Table B2) provides a summary of the fish known to be or potentially present in Woodland and McAllister Creeks at some point throughout the year. A complete survey has not been conducted in Woodland Creek, so the list in Appendix B was derived from the species reported to be present by Dobos et al. (1977) and ESA Adolfson (2008) and known to occur in the greater Olympia drainage area (Haub et al. 2018). The list of fish species for McAllister Creek was reported by Thurston County (1994, 2013b) and USFWS (2005). No fish were observed during the Windward site visits in June 2019 and March 2020.

3.3.3 Aquatic-dependent birds

Appendix B (Table B3) presents a list of all bird species known to occur in the Woodland Creek basin as reported by Dobos et al. (1977), Haub et al. (2018), and Windward during the June 2019 site visit, and in the McAllister Creek basin as reported by Thurston County (1994, 2013b), USFWS (2005), and Windward's site visit in March 2020. Of the 240 species listed in Appendix B, 124 are considered to be aquatic dependent.

3.3.4 Aquatic-dependent herptiles

Aquatic-dependent herptiles (i.e., amphibians and reptiles) feed on aquatic vegetation or aquatic invertebrates. All aquatic-dependent herptile species known to be or potentially present in the Woodland Creek and McAllister Creek basins are listed in Appendix B (Table B4).

3.3.5 Aquatic-dependent mammals

Several mammals that may feed on aquatic prey (i.e., benthic invertebrates and fish) are known to be present in the Woodland Creek and McAllister Creek basins. Appendix B (Table B5) presents the 63 mammal species known to occur in the area, 12 of which are considered to be aquatic dependent.

3.3.6 Sensitive aquatic or aquatic-dependent species

Of all the ecological receptors known to be or potentially present in the Woodland Creek and McAllister Creek areas, 20 fish species (including 3 fish runs), 11 bird species, 1 reptile, 2 amphibians, 1 invertebrate, and 3 aquatic-dependent mammal species are listed as sensitive (Appendix B, Table B6). These species are considered sensitive because they are listed by the USFWS under the Endangered Species Act and/or by the

Wind ward

WDFW as either a species of concern (i.e., endangered, threatened, sensitive, or candidate) or a priority species that meets any of the following three criteria:

- 1. State-listed candidate species
- 2. Vulnerable aggregations
- 3. Species of recreational, commercial, and/or tribal importance

4 Receptors of Concern

This section describes the representative ecological ROCs that will be evaluated in the risk characterization step of the ERA. Only those receptors that could be evaluated using water data (the only type of data available for this site) were considered as ROCs. Species for which direct water contact is the primary exposure route (aquatic plants, aquatic invertebrates, fish, and herptiles) are included as ROCs. In addition, bird and mammal species that consume primarily fish are included as ROCs, because chemical concentrations can be estimated in fish tissue using water concentrations and bioaccumulation factors (BAFs) or bioconcentration factors (BCFs).⁶

Because of the large number and variety of species potentially present in the study area, not all species can be evaluated individually in the risk characterization step. Instead, for aquatic species such as aquatic plants, invertebrates, fish, and herptiles that are exposed via direct contact with water, the general aquatic community will be evaluated using aquatic toxicity data available for a variety of species. For birds and wildlife, only one receptor from each group will be evaluated in the risk characterization step, as these receptors are expected to sufficiently represent other species. The belted kingfisher (Megaceryle alcyon) and northern river otter (Lontra canadensis) were selected as ROCs to represent piscivorous species of birds and mammals, respectively. Belted kingfisher is representative of other primarily piscivorous birds that may feed in Woodland and McAllister Creeks, such as great blue heron (Ardea herodias) or green heron (*Butorides virescens*). Northern river otter is considered representative of mink, the only other mammalian species that consumes primarily fish and could be present in Woodland and McAllister Creeks. Both species feed primarily on fish, although they may consume other types of aquatic organisms in smaller quantities (Prose 1985; Kelly et al. 2009). Belted kingfisher and northern river otter have been observed in Woodland Creek (Dobos et al. 1977) and McAllister Creek (Thurston County 1994; USFWS 2005) and are known to be present in the area (Haub et al. 2018). Exposure data for both species are readily available from EPA (1993) for evaluating uptake in a dietary model.

⁶ A BAF allows for an estimation of uptake from direct contact with water as well as intake through the diet, whereas a BCF accounts for only uptake from direct contact with water. If a BAF is not available for a particular chemical, a BCF may be used instead.

5 Conceptual Site Model

An ecological CSM is used to describe the pathways by which chemicals move from sources (i.e., surface water, tissue, sediment, and groundwater) to ecological receptors at a given site. A CSM is based on site-specific information about species known or assumed to be present at the site or similar systems and potential exposure pathways.

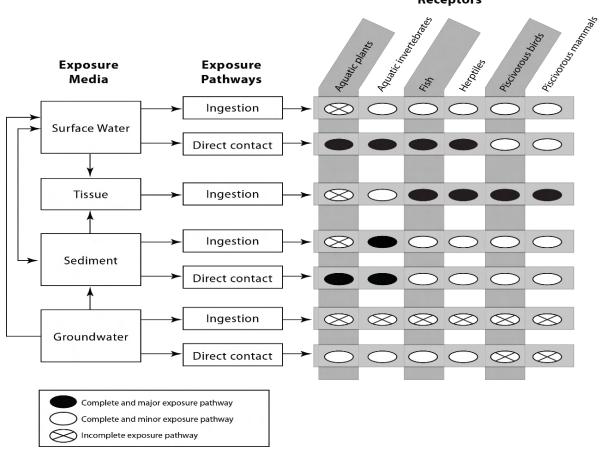

5.1 POTENTIAL EXPOSURE PATHWAYS

Figure 3 presents the CSM for this site, including exposure pathways for relevant ecological receptor groups. The most important exposure pathways for aquatic organisms in Woodland and McAllister Creeks are ingestion and direct contact. Exposure pathways are classified as one of the following for each ROC:

- **Complete and significant** Pathway is complete (i.e., there is a direct link between the ROC and chemicals in reclaimed water via this pathway) and expected to be a significant source of exposure for the ROC.
- **Complete and insignificant** Pathway is complete but not likely to significantly contribute to the exposure of the ROC.
- **Incomplete** There is no direct pathway of exposure between the ROC and chemicals in reclaimed water.

Receptors

Figure 3. Exposure pathway model for Woodland and McAllister Creeks

5.2 ASSESSMENT ENDPOINTS

For this problem formulation, assessment endpoints were identified as attributes of an ecological system to be protected (Table 5-1), based on the EPA (1998) definition of assessment endpoints as "explicit expressions of the actual environmental value that is to be protected, operationally defined by an ecological entity and its attributes." The assessment endpoints identified were the protection and maintenance of the aquatic community as a whole, of fish, and of aquatic-dependent bird and mammal (i.e., wildlife) populations residing in or feeding from Woodland or McAllister Creeks. Testable risk hypotheses were developed for all three assessment endpoints and were formulated into risk questions to be used in the risk characterization step of the ERA (Table 5-1). Based on these questions, the assessment endpoints will be addressed using measurement endpoints that involve the comparison of chemicals in surface water or fish tissue to ecological benchmarks derived from the scientific literature and calculated dietary doses. Only the chemicals identified in the screening-level evaluation will be

addressed in the risk characterization step. Toxicity reference values (TRVs) used to characterize risk will represent concentrations associated with a 20% reduction in growth, reproduction, or survival, where data are available.⁷

Assessment Endpoint	Risk Question	Measurement Endpoint
Protection and maintenance of aquatic community populations in Woodland and McAllister Creeks	Are modeled concentrations of chemicals in surface water in Woodland and McAllister Creeks (predicted based on a fate and transport model) at levels that might adversely affect the aquatic community?	comparison of modeled concentrations in surface water to TRVs ^a for reduced survival, growth, or reproduction
Protection and maintenance of fish populations in Woodland and McAllister Creeks	Are modeled concentrations of chemicals in the tissues of fish (modeled using BAFs/BCFs) in Woodland and McAllister Creeks at levels that might adversely affect fish populations?	comparison of modeled concentrations in fish tissue to TRVs for reduced survival, growth, or reproduction ^b
Protection and maintenance of aquatic-dependent wildlife populations in Woodland and McAllister Creeks	Are modeled concentrations of chemicals in the tissues of prey (modeled using BAFs/BCFs) consumed by birds and mammals in Woodland and McAllister Creeks at levels that might adversely affect aquatic-dependent wildlife populations? ^c	comparison of calculated dietary doses to TRVs for reduced survival, growth, or reproduction ^d

Table 5-1. Assessment endpoints for Woodland and McAllister Creeks

а A water TRV is a concentration of a COI in water representing a toxicity threshold below which adverse effects are not expected to occur.

- b A tissue TRV is a concentration of a COI in tissue representing a toxicity threshold below which adverse effects are not expected to occur.
- с The tissue ingestion pathway is only complete for chemicals that bioaccumulate.
- d A dietary TRV is a dose of a COI (i.e., an amount ingested daily on a body weight-normalized basis) representing a toxicity threshold below which adverse effects are not expected to occur.
- BAF bioaccumulation factor
- BCF bioconcentration factor

COI - chemical of interest

TRV - toxicity reference value

⁷ In comparison, toxicity benchmarks used for the screening assessment are based primarily on concentrations associated with no effect or the geomean of the no-effect and lowest-effect concentrations (see Section 6.2).

6 Selection of Chemicals of Potential Ecological Concern

This section describes the methods used to refine the list of COIs to a list of COPECs, which will be considered further. COPECs were selected by comparing the maximum concentrations of COIs in reclaimed water or porewater samples to conservative screening-level benchmarks. In addition, chemicals identified as persistent and bioaccumulative were selected as COPECs, as described in Section 6.2.3. The COIs for this evaluation were residual chemicals (i.e., pharmaceuticals, personal care products, and hormones),⁸ organobromine compounds (polybrominated diephenyl ethers [PBDEs], ethylene dibromide [EDB], and dibromochloropropane [DBCP]), and per- and polyfluoralkyl substances (PFAS).

6.1 AVAILABLE DATA

COIs were analyzed in the following types of water samples collected from the vicinity of one or both LOTT wastewater treatment plants (MWRWP and BITP/BIRWP):⁹

- Effluent Secondary effluent produced at BITP was sampled in November 2014 and February and August 2015 (HDR 2017c).
- Reclaimed water Reclaimed water was sampled at MWRWP in November 2014 and February, May, and October 2015. Sampling took place at the MWRWP treatment plant, the inflow point to the Hawks Prairie wetland ponds, and the inflow point to the Hawks Prairie recharge basins. Reclaimed water from BITP/BIRWP was sampled at one location in November 2014 and February, May, and August 2015 (HDR 2017c). In addition, reclaimed water that bypassed the wetland ponds at MWRWP was sampled from January through October 2018 (HDR 2019).
- Porewater Vadose zone porewater was collected from three depths at two locations within one of the Hawks Prairie recharge basins on a monthly basis from January through October 2018. Residual chemicals were analyzed in January, April, June, and August of the same year (HDR 2019).
- Groundwater Groundwater was collected from domestic and municipal water wells in two study areas. In the Hawks Prairie area, 7 monitoring wells were

⁹ Untreated wastewater influent from MWRWP was sampled at the Martin Way Pump Station in November 2014 and February, May, and October 2015. Influent from BITP was sampled in November 2014 and February, May, and August 2015 (HDR 2017c). Influent data were not used to select COPECs.

⁸ The residual chemicals include 95 chemicals on the standard analyte list of the Eurofins-Eaton Analytical, Inc. laboratory in Monrovia, California. This list was developed to support reclaimed water projects in California and is currently used extensively throughout the United States on various projects. The list includes all analytes recommended by the California State Water Board for routine monitoring. See Appendix A of HDR (2017c) for a full list of residual chemicals analyzed.

sampled in 2013; 26 residential, public supply, and monitoring wells were sampled from April through June 2015, and 3 monitoring wells were resampled in May 2016. In the Tumwater area, 30 residential and public supply wells were sampled from August through September 2015 (HDR 2017a). In addition, groundwater was collected from 14 wells in the Hawks Prairie area during various sampling events from January through October 2018 (HDR 2019).

 Surface water – Surface water was collected from the Woodland Creek and Deschutes River watersheds during four sampling events in 2015. Sampling took place on the upper and lower sections of Woodland Creek, on the Deschutes River, and on associated tributaries. In addition, reference locations were sampled in the summer and winter of 2015 (HDR 2017b).

6.2 METHODS

This section describes the methods used to derive the screening-level benchmarks (Section 6.2.1), to compare those benchmarks to LOTT water quality data (Section 6.2.2), and to identify persistent and bioaccumulative chemicals (Section 6.2.3).

6.2.1 Derivation of screening-level benchmarks

Standard screening-level benchmarks are not available for the COIs evaluated for this study (with the exception of 4-nonylphenol, fipronil, and linuron), because these COIs are contaminants of emerging concern (EPA 2016). Therefore, screening-level benchmarks were derived by consulting a variety of resources, as available. Chronic toxicity values were used in all cases to better reflect what is known about the potential effects of long-term exposures. The primary sources of toxicity values were EPA's Ecological Structure Activity Relationships (ECOSAR) model (Mayo-Bean et al. 2017), Caldwell et al. (2012), Maruya et al. (2013), and ECOTOX (EPA 2018). These sources and the benchmarks derived from them are described in more detail in this section. Table 6-1 provides the list of benchmarks selected for screening COIs detected in reclaimed water or porewater. A total of 29 literature-based benchmarks (27 for COIs detected in reclaimed water or porewater) were used (in parallel with ECOSAR-based benchmarks) for screening purposes. Appendix C, Table C1, also provides a tabular compilation of these benchmarks. Benchmarks were not derived for COIs that were not detected in any medium, and those COIs were not screened as part of this evaluation.

	COI Infor	mation		ECOSAR I	nformation	Literature Information			
COI Name	COI Group	Use	CAS Registry No.	MATC/10 (ng/L)	Modeled Species	Benchmark (ng/L)	Endpoint	Notes	
1,4-Dioxane	residual chemicals	non-PPCP	123-91-1	20,073,300	green algae				
1,7-Dimethylxanthine	residual chemicals	caffeine degradate	611-59-6	400	green algae				
2,4-Dichlorophenoxyacetic (2,4-D)	residual chemicals	herbicide	94-75-7	3,480,900	daphnid	79,000,000	NOEC	daphnia	
4-Nonylphenol	residual chemicals	surfactant	104-40-5	600	fish	500	LOEC	Atlantic salmon, safety factor of 10; EPA's aquatic life criterion is 6,600 ng/L	
4-tert-Octylphenol	residual chemicals	surfactant	140-66-9	1,900	fish	3,200	NOEC	zebrafish	
Acesulfame-K	residual chemicals	sugar substitute	55589-62-3	151,701,20 0	green algae				
Acetaminophen	residual chemicals	analgesic	103-90-2	47,900	fish	9,200,000	NOEC	daphnia	
Albuterol	residual chemicals	anti-asthmatic	18559-94-9	130,300	daphnid				
Amoxicillin	residual chemicals	antibiotic	26787-78-0	551,000	fish				
Atenolol	residual chemicals	beta blocker	29122-68-7	114,900	fish	19,000	EC10	duckweed (plant)	
BPA	residual chemicals	plasticizer	80-05-7	22,700	green algae	120,000	NOEC	fathead minnow	
Bromacil	residual chemicals	herbicide	314-40-9	500	green algae				

Table 6-1. Screening-level benchmarks for COIs detected in reclaimed water or porewater

	COI Infor	mation		ECOSAR	Information	Literature Information			
COI Name	COI Group	Use	CAS Registry No.	MATC/10 (ng/L)	Modeled Species	Benchmark (ng/L)	Endpoint	Notes	
Butalbital	residual chemicals	analgesic-NSAID	77-26-9	500	green algae				
Caffeine	residual chemicals	stimulant	58-08-2	400	green algae				
Carbadox	residual chemicals	antibiotic	6804-07-5	155,300	green algae				
Carbamazepine	residual chemicals	anti-seizure	298-46-4	13,000	green algae	875,000	NOEC	geometric mean of multiple results (daphnid and zebrafish)	
Carisoprodol	residual chemicals	muscle relaxant	78-44-4	150,200	fish				
Chloramphenicol	residual chemicals	antibiotic	56-75-7	21,700	green algae				
Chloridazon	residual chemicals	herbicide	1698-60-8	36,700	green algae				
Clofibric Acid	residual chemicals	herbicide/ cholesterol drug	882-09-7	2,289,900	daphnid	40,000,000	NOEC	daphnia	
Cotinine	residual chemicals	nicotine degradate	486-56-6	51,800	fish				
Cyanazine	residual chemicals	triazine herbicide	21725-46-2	7,100	green algae				
DACT	residual chemicals	triazine degradate	3397-62-4	5,400	daphnid				
DEA	residual chemicals	triazine degradate	111-42-2	2,323,400	daphnid				
DEET	residual chemicals	mosquito repellant	134-62-3	7,500	fish				
Dehydronifedipine	residual chemicals	blood pressure drug metabolite	67035-22-7	57,800	fish				

	COI Infor	mation		ECOSAR	Information	Literature Information			
COI Name	COI Group	Use	CAS Registry No.	MATC/10 (ng/L)	Modeled Species	Benchmark (ng/L)	Endpoint	Notes	
Diazepam	residual chemicals	antianxiety	439-14-5	7,000	fish				
Dibromochloropropane	organobro mine	antihelmintic	96-12-8	332,800	daphnid				
Diclofenac	residual chemicals	anti-inflammatory	15307-86-5	421,600	daphnid	1,500,000	NOEC	zebrafish	
Dilantin	residual chemicals	anti-seizure	57-41-0	500	green algae	788,400	LOEC	zebrafish, safety factor of 10	
Diltiazem	residual chemicals	vasodilator	42399-41-7	9,200	fish				
Diuron	residual chemicals	herbicide	330-54-1	9,300	green algae				
Erythromycin	residual chemicals	antibiotic	114-07-8	74,700	daphnid				
Estradiol – 17 beta	residual chemicals	estrogenic hormone	50-28-2	21,200	fish	2	PNEC	based on multiple species	
Estrone	residual chemicals	estrogenic hormone	53-16-7	41,500	daphnid	6	PNEC	based on multiple species	
Ethinyl estradiol – 17 alpha	residual chemicals	estrogenic hormone	57-63-6	17,500	fish	0.1	PNEC	based on multiple species	
Fipronil	organobro mine	insecticide	120068-37-3	16	fish	11	EPA chronic value	invertebrate benchmark	
Flumequine	residual chemicals	antibiotic	42835-25-6	359,700	daphnid				
Fluoxetine	residual chemicals	antidepressant	54910-89-3	1,900	daphnid				
Gemfibrozil	residual chemicals	lipid regulator	25812-30-0	88,900	fish	851,900	NOEC	goldfish	

	COI Infor	mation		ECOSAR	Information	Literature Information			
COI Name	COI Group	Use	CAS Registry No.	MATC/10 (ng/L)	Modeled Species	Benchmark (ng/L)	Endpoint	Notes	
Ibuprofen	residual chemicals	analgesic-NSAID	15687-27-1	430,500	daphnid	1,000	NOEC	medaka	
lohexol	residual chemicals	x-ray contrast agent	66108-95-0	6,602,100	fish				
lopromide	residual chemicals	x-ray contrast agent	73334-07-3	4,560,000	fish				
Ketorolac	residual chemicals	anti-inflammatory	74103-06-3	1,000	daphnid				
Lidocaine	residual chemicals	analgesic	137-58-6	17,200	fish				
Lincomycin	residual chemicals	antibiotic	154-21-2	126,000	fish				
Linuron	residual chemicals	herbicide	330-55-2	8,400	green algae	90	EPA chronic value	invertebrate benchmark	
Lopressor	residual chemicals	beta blocker	51384-51-1	74,500	daphnid				
Meclofenamic acid	residual chemicals	anti-inflammatory	644-62-2	9,000	fish	no data		no suitable ECOTOX values	
Meprobamate	residual chemicals	anti-anxiety	57-53-4	1,067,400	fish				
Metformin	residual chemicals	antidiabetic	657-24-9	1,898,100	daphnid				
Methylparaben	residual chemicals	preservative	99-76-3	152,000	daphnid				
Naproxen	residual chemicals	analgesic-NSAID	22204-53-1	1,573,700	daphnid	793	NOEC	fathead minnow	
Nifedipine	residual chemicals	calcium blocker	21829-25-4	34,400	daphnid				

	COI Infor	mation		ECOSAR	nformation	Li	iterature Info	ormation
COI Name	COI Group	Use	CAS Registry No.	MATC/10 (ng/L)	Modeled Species	Benchmark (ng/L)	Endpoint	Notes
NDMA	residual chemicals	degradate/impurity (fuel, food stuff, pesticides)	62-75-9	412,000	daphnid			
Norethisterone	residual chemicals	steroid hormone	68-22-4	493,000	daphnid			
OUST® (Sulfameturon,methyl)	residual chemicals	herbicide	74222-97-2	2,400	green algae			
Oxolinic acid	residual chemicals	antibiotic	14698-29-4	589,700	daphnid			
Pentoxifylline	residual chemicals	blood thinner	6493-05-6	600	green algae			
PFOA	PFAS	perfluoro surfactant	335-67-1	134,100	fish	16,000,000	NOEC	rainbow trout (plasma vitellogenin biomarker)
Perfluoro-1-butanesulfonic acid	PFAS	perfluoro surfactant	375-73-5	18,686,500	daphnid			no suitable ECOTOX values
PFBA	PFAS	perfluoro surfactant	375-22-4	7,684,500	daphnid	13,700,000	LOEC	zebrafish, safety factor of 10
Perfluoro-n-hexanoic acid	PFAS	perfluoro surfactant	307-24-4	1,130,600	daphnid	724,000,000	EC05	daphnia
PFNA	PFAS	perfluoro surfactant	375-95-1	40,500	fish	24,596,165,8 00	NOEC	daphnid; literature benchmark unrealistic because it exceeds solubility by six orders of magnitude.
Perfluoropentanoic acid	PFAS	perfluoro surfactant	2706-90-3	3,001,800	daphnid	100,000	LOEC	rotifer; safety factor of 10
Primidone	residual chemicals	anti-convulsant	125-33-7	42,700	fish			

	COI Infor	mation		ECOSAR	Information	Literature Information			
COI Name	COI Group	Use	CAS Registry No.	MATC/10 (ng/L)	Modeled Species	Benchmark (ng/L)	Endpoint	Notes	
Quinoline	residual chemicals	pesticide	91-22-5	459,800	daphnid				
Salicylic acid	residual chemicals	skin-care agent	69-72-7	412,600	daphnid				
Simazine	residual chemicals	triazine herbicide	122-34-9	6,400	green algae				
Sucralose	residual chemicals	sugar substitute	56038-13-2	17,000	green algae				
Sulfadiazine	residual chemicals	sulfa antibiotic	68-35-9	14,800	daphnid				
Sulfadimethoxine	residual chemicals	sulfa antibiotic	122-11-2	6,600	daphnid				
Sulfamethoxazole	residual chemicals	sulfa antibiotic	723-46-6	8,600	daphnid	243,000	NOEC	geometric mean of multiple results (algae and zebrafish)	
TCEP	residual chemicals	flame retardant	115-96-8	1,500	fish				
ТСРР	residual chemicals	flame retardant	1067-98-7	1,100	fish	13,000,000	NOEC	daphnia	
TDCPP	residual chemicals	flame retardant	13674-87-8	1,200	fish				
Testosterone	hormone	steroid hormone	58-22-0	148,100	daphnid	10,000	NOEC	daphnia	
Theobromine	residual chemicals	caffeine degradate	83-67-0	400	green algae				
Theophylline	residual chemicals	anti-asthmatic	58-55-9	400	green algae				
Thiabendazole	residual chemicals	anthelminthic	148-79-8	6,600	daphnid				

	COI Infor	mation		ECOSAR I	nformation	Literature Information			
COI Name	COI Group	Group Use		MATC/10 (ng/L)	Modeled Species	Benchmark (ng/L)	Endpoint	Notes	
Triclosan	residual chemicals	antibacterial	3380-34-5	7,100	fish	15,100	NOEC	rainbow trout	
Trimethoprim ^a	residual chemicals	antibiotic	23256-42-0	8,100	daphnid				

Note: COIs presented in Table 6-1 were detected in reclaimed water or porewater. Additional information about selected benchmarks is presented in Appendix C.

^a ECOSAR modeling for trimethoprim was based on a compound excluding lactate ion. CAS registry number relates to the commercially available lactate salt.

- BPA bisphenol A
- CAS chemical abstracts service

COI - chemical of interest

DACT - 2-Chloro-4,6-diamino-1,3,5-triazine

DEA - diethanolamine

- DEET N,N-Diethyl-m-toluamide
- ECx concentration that causes a non-lethal effect in x% of an exposed population
- ECOSAR -- Ecological Structure Activity

Relationships

- EPA US Environmental Protection Agency
- LOEC lowest-observed-effect concentration
- MATC maximum acceptable toxic concentration
- NDMA N-Nitroso dimethylamine
- NOEC no observed effect concentration
- NSAID nonsteroidal anti-inflammatory drug
- PFAS per- and polyfluoralkyl substances

- PFBA perfluoro butanoic acid
- PFNA perfluoro-n-nonanoic acid
- PFOA perfluoro octanoic acid
- PNEC probable no-effect concentration
- PPCP pharmaceutical and personal care product
- TCEP tris(2-carboxyethyl)phosphine
- TCPP tris(chloropropyl)phosphate
- TDCPP tris(1,3-dichloro-2-propyl)phosphate

Chronic toxicity values were estimated using the ECOSAR model in EPA's Estimation Program Interface (EPI) Suite software (version 4.11). ECOSAR uses the chemical structure of a molecule to estimate its toxicity to aquatic organisms (Mayo-Bean et al. 2017).¹⁰ ECOSAR estimates maximum acceptable toxic concentrations (MATCs) (referred to by the EPI Suite as "chronic values," or ChVs), which are the geometric means of the no-observed-effect concentration (NOECs) and the lowest-observed-effect concentration (LOECs). An MATC is an estimate of the lowest point at which an effect would be observed after chronic exposure to a given COI. For more complex molecules, several MATCs may be generated by ECOSAR for each organism. In such cases, the lowest (i.e., most protective) MATC among all freshwater species modeled by ECOSAR (i.e., green algae, daphnids, and fish) was used as the basis for the screening-level benchmark. Because of potential uncertainties associated with the use of a model rather than empirical data, a safety factor of 10 was applied to the lowest MATC derived from ECOSAR.

The steroid estrogen COIs included in this evaluation (i.e., estrone, 17-alpha ethinyl estradiol, and 17-beta estradiol) are potent endocrine-disrupting compounds (Adeel et al. 2017; Ebele et al. 2017), and their measured chronic toxicity values are substantially lower than those predicted by ECOSAR (Caldwell et al. 2012). As a result, literature-based probable no-effect concentration (PNEC) values for these compounds were used to screen COIs (in addition to ECOSAR-based benchmarks) (Caldwell et al. 2012). PNECs are conservative benchmarks based on a range of NOECs and species, so no safety factor was applied.

Values reported by Maruya et al. (2013) were also used because the authors compiled many relevant risk-based values for COIs, the toxicity data were readily available (in supplemental materials to the authors' report), and the values were recommended for use by a regulatory agency (in California). From among the available data compiled by Maruya et al. (2013), the highest available NOEC below an associated LOEC (from the same source study) was used. If an associated LOEC was not available, the geometric mean of NOECs was selected as the benchmark. When NOECs were unavailable in the literature, conservative ECx values (concentrations that cause a non-lethal effect in x% of an exposed population) or LOEC values were used. LOECs were divided by a safety factor of 10 to account for uncertainty in using an effect level (rather than a no-effect level), while an EC05 or EC10 was considered sufficiently conservative (and likely comparable to a NOEC or MATC) without applying a safety factor.¹¹

¹¹ LOEC/10 values were used for 4-nonylphenol and triclocarban, an EC05 was used for perfluoro-nhexanoic acid, and an EC10 was used for atenolol.

¹⁰ Chemical structure was put into the EPI Suite interface using Simplified Molecular-Input Line-Entry System (SMILES) values, which were obtained for each COI from the National Institutes of Health PubChem database (NIH 2019).

For eight COIs,¹² ECOSAR identified MATC values as relatively uncertain, so these COIs were evaluated further. Specifically, this situation applied to cases in which the mechanism of action assumed by ECOSAR was narcosis, which may have resulted in unrealistically high MATCs. To address this uncertainty, data were exported from the ECOTOX database. From the available data, the highest available chronic NOEC that was less than an effect level (e.g., LOEC or EC10) was selected as a screening-level benchmark, if possible. LOEC and EC05 values were also selected from ECOTOX when NOECs were unavailable. Prior to selecting ECOTOX values, several types of data were excluded: effect levels greater than 50%, values missing a reported endpoint, values missing a reported exposure duration, and unbounded values.¹³ Despite searching, no benchmark values could be derived from ECOTOX for two COIs: meclofenamic acid and perfluoro-1-butanesulfonic acid (which is also included in the LOTT database as the conjugate base perfluoro-1-butanesulfonate). ECOSAR values were still used to screen these COIs.

6.2.2 Comparison to screening-level benchmarks

COI concentrations reported in the LOTT database were screened against the benchmarks described in Section 6.2.1 (Table 6-1 and Appendix C). COIs that were identified for analysis but were not detected in any medium were excluded from the comparison to benchmarks. Exceedance factors (EFs) were calculated by dividing the measured concentration by the associated benchmark value. If a COI concentration exceeded either an ECOSAR- or literature-based benchmark (EF > 1), then the COI was identified as a COPEC. Although Table 6-1 (as well as tables in Section 6.3) includes only COI benchmarks that were detected in reclaimed water or porewater, concentrations, benchmarks, and benchmark screening results are also provided for chemicals that were detected in other media (but not reclaimed water or porewater); data related to chemicals not detected in reclaimed water or porewater are provided in Appendix C.

6.2.3 Identification of persistent and bioaccumulative compounds

COPECs were also identified by evaluating whether a COI was persistent and bioaccumulative. Persistent and bioaccumulative COIs were retained as COPECs regardless of whether they exceeded screening-level benchmarks, because the screening-level benchmarks were for exposure via water, not food. Because dietary exposure might be an important exposure route for persistent and bioaccumulative COIs, it will be evaluated as part of the risk characterization step for those COPECs

butanesulfonate, perfluoro-n-hexanoic acid, perfluoro-n-nonanoic acid, and perfluoropentanoic acid. ¹³ An unbounded LOEC was reported when there was significant toxicity measured at the lowest tested concentration, and an unbounded NOEC was reported when there was no significant toxicity measured at the highest concentration tested.

¹² The eight COIs were 2,4-D, clofibric acid, diclofenac, perfluoro butanoic acid, perfluoro-1-

retained based on persistence and bioaccumulation potential. The evaluation described herein is limited to COIs detected in reclaimed water or porewater, although Appendix C describes additional COIs that were detected in other media.

Models in EPA's EPI Suite can predict chemical fate parameters for a given chemical, such as its water solubility, octanol-water partitioning coefficient (Kow), BAF, and environmental half-life. Using the ranking methods from Toxic Substances Control Act (TSCA) guidance (EPA 2012), half-lives and BAFs were used to determine whether each COI was persistent and bioaccumulative. Per TSCA methods, a COI is assigned a score depending on its degree of persistence and bioaccumulation potential. If a COI's estimated BAF or BCF is between 1,000 and 5,000, it is given a bioaccumulation score of two; if the BAF or BCF is 5,000 or higher, the COI is given a bioaccumulation score of three. In this evaluation, BAFs were used instead of BCFs, because BAFs account for uptake from both water and diet, whereas BCFs account for uptake from water only. The highest (i.e., most conservative) BAF among the trophic levels was used to evaluate bioaccumulation potential.¹⁴ Then, if the half-life in any environmental medium exceeds two months, the COI is given a persistence score of two, or if the half-life exceeds six months, it is given a score of three. Per TSCA guidance, chemicals with combined bioaccumulation and persistence scores of three or four are assigned a "moderate" ranking, and chemicals with scores of five or six are assigned a "high" ranking. For this evaluation, COIs with a high ranking were classified as COPECs. PFAS are bioaccumulative (despite having relatively low K_{ow} values) (Cheng and Ng 2018); therefore, all PFAS detected in reclaimed water or porewater were classified as COPECs regardless of the BAF estimates made by EPI Suite.

6.3 RESULTS

The results of the benchmark screen for reclaimed water and porewater are provided in Table 6-2. Of the COIs considered, 82 were detected in reclaimed water or porewater, and 8 had EFs > 1: 4-nonylphenol, 17-alpha ethinyl estradiol, 17-beta estradiol, fipronil, sucralose, tris(chloropropyl)phosphate (TCPP), tris(1,3-dichloro-2-propyl)phosphate (TDCPP), and theobromine. All eight of these COIs have been classified as COPECs for further consideration. The full data screen (including COIs detected in other media) is provided in Appendix C, Tables C2 and C3.

¹⁴ All trophic levels were considered relevant for the screening-level evaluation. In addition, BAFs that considered biotransformation (i.e., metabolism) were used, because they were most relevant for net bioaccumulation. Because many of the COIs are pharmaceuticals or the metabolic byproducts thereof, it is reasonable to expect that many COIs will be biotransformed by other biota.

Table 6-2. Results of COPEC screening process, COIs detected in reclaimed water or porewater

соі	N	DF (%)	Max Detected Conc. (ng/L)	ECOSAR-based Benchmark (ng/L)	Literature- based Benchmark (ng/L)	No. Exceeding ECOSAR-based Benchmark	No. Exceeding Literature-based Benchmark	ECOSAR- based EF (Max.)	Literature- based EF (Max.)	Max. EF > 1?
1,4-Dioxane	49	100	850	20,073,300		0		0.000042		no
1,7-Dimethylxanthine	50	20	45	400		0		0.11		no
2,4- Dichlorophenoxyacetic acid (2,4-D)	50	32	160	3,480,900	79,000,000	0	0	0.000046	0.000002	no
4-Nonylphenol ^a	55	53	510,000	600	500	17	18	850	1000	yes
4-tert-Octylphenol	50	6	130	1,900	3,200	0	0	0.068	0.041	no
Acesulfame-K	50	88	13,000	151,701,200		0		0.000086		no
Acetaminophen	50	40	160	47,900	9,200,000	0	0	0.0033	0.000017	no
Albuterol	50	20	11	130,300		0		0.000084		no
Amoxicillin	50	2	33	551,000		0		0.00006		no
Atenolol	50	76	230	114,900	19,000	0	0	0.002	0.012	no
BPA	53	5.7	28	22,700	120,000	0	0	0.0012	0.00023	no
Bromacil	50	6	14	500		0		0.028		no
Butalbital	50	86	54	500		0		0.11		no
Caffeine	50	14	76	400		0		0.19		no
Carbadox	50	2	14	155,300		0		0.00009		no
Carbamazepine	50	100	850	13,000	875,000	0	0	0.065	0.00097	no
Carisoprodol	50	86	110	150,200		0		0.00073		no
Chloramphenicol	50	2	24	21,700		0		0.0011		no
Chloridazon	50	8	62	36,700		0		0.0017		no
Clofibric acid	50	22	120	2,289,900	40,000,000	0	0	0.000052	0.000003	no
Cotinine	50	48	130	51,800		0		0.0025		no
Cyanazine	50	6	9.3	7,100		0		0.0013		no

Wind ward

COI	N	DF (%)	Max Detected Conc. (ng/L)	ECOSAR-based Benchmark (ng/L)	Literature- based Benchmark (ng/L)	No. Exceeding ECOSAR-based Benchmark	No. Exceeding Literature-based Benchmark	ECOSAR- based EF (Max.)	Literature- based EF (Max.)	Max. EF > 1?
DACT	50	6	12	5,400		0		0.0022		no
DEA	50	4	20	2,323,400		0		0.0000086		no
DEET	50	78	500	7,500		0		0.067		no
Dehydronifedipine	50	6	8.7	57,800		0		0.00015		no
Diazepam	50	4	9.3	7,000		0		0.0013		no
Dibromochloropropane	15	6.7	11	332,800		0		0.000033		no
Diclofenac	50	36	260	421,600	1,500,000	0	0	0.00062	0.00017	no
Dilantin	50	62	130	500	788,400	0	0	0.26	0.00016	no
Diltiazem	50	18	370	9,200		0		0.04		no
Diuron	50	62	100	9,300		0		0.011		no
Erythromycin	50	18	48	74,700		0		0.00064		no
Estradiol - 17 beta	65	6.2	35	21,200	2	0	4	0.0017	18	yes
Estrone	65	7.7	1.9	41,500	6	0	0	0.000046	0.32	no
Ethinyl estradiol – 17 alpha	65	17	64	17,500	0.1	0	11	0.0037	640	yes
Fipronil	12	50	51	15.8	11	3	3	3.2	4.6	yes
Flumeqine	50	8	98	359,700		0		0.00027		no
Fluoxetine	50	52	210	1,900		0		0.11		no
Gemfibrozil	50	44	710	88,900	851,900	0	0	0.008	0.00083	no
Ibuprofen	50	26	320	430,500	1,000	0	0	0.00074	0.32	no
lohexol	50	88	14,000	6,602,100		0		0.0021		no
lopromide	50	54	540	4,560,000		0		0.00012		no
Ketorolac	50	6	18	1,000		0		0.018		no
Lidocaine	50	60	550	17,200		0		0.032		no
Lincomycin	50	12	76	126,000		0		0.0006		no

Wind ward

COI	N	DF (%)	Max Detected Conc. (ng/L)	ECOSAR-based Benchmark (ng/L)	Literature- based Benchmark (ng/L)	No. Exceeding ECOSAR-based Benchmark	No. Exceeding Literature-based Benchmark	ECOSAR- based EF (Max.)	Literature- based EF (Max.)	Max. EF > 1?
Linuron	50	10	7.9	8,400	90	0	0	0.00094	0.088	no
Lopressor	50	78	900	74,500		0		0.012		no
Meclofenamic acid	50	12	300	9,000		0		0.033		no
Meprobamate	50	82	390	1,067,400		0		0.00037		no
Metformin	50	56	2,600	1,898,100		0		0.0014		no
Methylparaben	50	4	48	152,000		0		0.00032		no
Naproxen	50	8	32	1,573,700	793	0	0	0.00002	0.04	no
Nifedipine	50	2	20	34,400		0		0.00058		no
NDMA	49	51	8.2	412,000		0		0.00002		no
Norethisterone	50	4	5.9	493,000		0		0.000012		no
OUST® (Sulfameturon,methyl)	35	2.9	11	2,400		0		0.0046		no
Oxolinic acid	50	6	64	589,700		0		0.00011		no
Pentoxifylline	50	8	9.9	600		0		0.017		no
PFOA	51	90	31	134,100	16,000,000	0	0	0.00023	0.0000019	no
Perfluoro-1- butanesulfonic acid	102	80	27	18,686,500		0	0	0.0000014		no
PFBA	51	5.9	17	7,684,500	13,700,000	0		0.0000022	0.0000012	no
Perfluoro-n-hexanoic acid	51	96	81	1,130,600	724,000,000	0	0	0.000072	0.00000011	no
PFNA	51	2	5.7	40,500	24,596,165,800	0	0	0.00014	2.3E-10	no
Perfluoropentanoic acid	48	96	150	3,001,800	100,000	0	0	0.00005	0.0015	no
Primidone	50	90	930	42,700		0		0.022		no
Quinoline	50	20	28	459,800		0		0.000061		no
Salicylic acid	35	2.9	130	412,600		0		0.00032		no
Simazine	50	8	7.7	6,400		0		0.0012		no
Sucralose	50	100	470,000	17,000		47		28		yes

FINAL

соі	N	DF (%)	Max Detected Conc. (ng/L)	ECOSAR-based Benchmark (ng/L)	Literature- based Benchmark (ng/L)	No. Exceeding ECOSAR-based Benchmark	No. Exceeding Literature-based Benchmark	ECOSAR- based EF (Max.)	Literature- based EF (Max.)	Max. EF > 1?
Sulfadiazine	50	4	300	14,800		0		0.02		no
Sulfadimethoxine	50	6	39	6,600		0		0.0059		no
Sulfamethoxazole	50	72	700	8,600	243,000	0	0	0.081	0.0029	no
TCEP	50	94	240	1,500		0		0.16		no
TCPP	50	86	1,300	1,100	13,000,000	4	0	1.2	0.0001	yes
TDCPP	50	70	2,000	1,200		5		1.7		yes
Testosterone	50	8	31	148,100	10,000	0	0	0.00021	0.0031	no
Theobromine	50	26	490	400		1		1.2		yes
Theophylline	35	26	160	400		0		0.4		no
Thiabendazole	50	32	600	6,600		0		0.091		no
Triclosan	50	42	130	7,100	15,100	0	0	0.018	0.0086	no
Trimethoprim	50	18	97	8,100		0		0.012		no

^a Data for 4-nonylphenol include "semi-quantitative" measurements reported for wastewater (in addition to fully quantitative measurements).

BPA – bisphenol A

COI – chemical of interest

COPEC - chemical of potential ecological concern

DACT – 2-Chloro-4,6-diamino-1,3,5-triazine

DEA - diethanolamine

DEET - N,N-Diethyl-m-toluamide

- DF detection frequency EF – exceedance factor
- ECOSAR -- Ecological Structure Activity Relationships

NDMA – N-Nitroso dimethylamin

PFBA – perfluoro butanoic acid

PFNA – perfluoro-n-nonanoic acid PFOA – perfluoro octanoic acid TCEP – tris(2-carboxyethyl)phosphine TCPP – tris(chloropropyl)phosphate TDCPP – tris(1,3-dichloro-2-propyl)phosphate

Wind ward

The results of the persistence and bioaccumulation screen are provided in Table 6-3. Of the COIs detected in reclaimed water or porewater, six were assigned a score of five or six (per the BAF and half-life benchmarks described in Section 6.2.3): perfluoro octanoic acid (PFOA), perfluoro-n-nonanoic acid (PFNA), diclofenac, gemfibrozil, meclofenamic acid, and triclosan. Of these COIs, meclofenamic acid, PFOA, and PFNA were assigned scores of six. Three other persistent and bioaccumulative compounds were detected in other media – perfluoro-n-heptanoic acid, perfluoro octanesulfonic acid, and nonylphenol monoethoxylate – but only the six COIs listed above were detected in reclaimed water or porewater. Diclofenac and gemfibrozil have relatively low estimated half-lives in water (38 days); however, their half-lives are much longer in solid media (75 days in soil and 340 days in sediment). PFNA and PFOA are the most persistent COIs, each expected to have half-lives of 180 days in water. PFNA and meclofenamic acid are likely the most bioaccumulative among the six COIs, with BAFs of 27,180 and 111,900, respectively. The four additional PFAS detected in reclaimed water or porewater (perfluoro-1-butanesulfonic acid, perfluoro butanoic acid [PFBA], perfluoro-n-hexanoic acid, and perfluoropentanoic acid) were also considered COPECs because of their known bioaccumulative potential.

	Est	imated H	alf-life	(days) ^a	-		- .	Total
COI	Air	Water	Soil	Sediment	Estimated BAF ^a	Persistence Score ^b	Bioaccum. Score ^ь	Score ≥ 5? ^b
1,4-Dioxane	0.98	15	30	140	0.9649	3	1	no
1,7-Dimethylxanthine	0.19	15	30	140	0.9606	3	1	no
2,4-Dichlorophenoxyacetic acid (2,4-D)	1.6	38	75	340	68.75	3	1	no
4-Nonylphenol	0.21	15	30	140	752.1	3	1	no
4-tert-Octylphenol	0.25	38	75	340	816.2	3	1	no
Acesulfame-K	0.19	15	30	140	0.9415	3	1	no
Acetaminophen	0.6	15	30	140	1.032	3	1	no
Albuterol	0.079	15	30	140	1.056	3	1	no
Amoxicillin	0.077	38	75	340	1.155	3	1	no
Atenolol	0.077	38	75	340	0.992	3	1	no
BPA	0.13	38	75	340	172.8	3	1	no
Bromacil	0.51	38	75	340	7.099	3	1	no
Butalbital	0.21	38	75	340	2.272	3	1	no
Caffeine	0.55	15	30	140	0.9759	3	1	no
Carbadox	1.1	38	75	340	0.9411	3	1	no
Carbamazepine	0.034	38	75	340	19.3	3	1	no
Carisoprodol	0.31	38	75	340	4.128	3	1	no

Table 6-3. Results of persistence and bioaccumulation screen, COIs detected in reclaimed water or porewater

Wind ward

	Estimated Half-life (days) ^a						Total	
COI	Air	Water	Soil	Sediment	Estimated BAF ^a	Persistence Score ^b	Bioaccum. Score ^b	Score ≥ 5? ^b
Chloramphenicol	0.35	60	120	540	1.269	3	1	no
Chloridazon	0.26	38	75	340	2.195	3	1	no
Clofibric acid	1.4	38	75	340	37.96	3	1	no
Cotinine	0.41	38	75	340	0.9664	3	1	no
Cyanazine	1.2	180	360	1,600	10.87	3	1	no
DACT	91	60	120	540	1.003	3	1	no
DEA	0.12	8.7	17	78	0.9415	3	1	no
DEET	0.42	38	75	340	13.3	3	1	no
Dehydronifedipine	7.3	60	120	540	8.58	3	1	no
Diazepam	1.1	38	75	340	57.64	3	1	no
Dibromochloropropane	25	38	75	340	24.81	3	1	no
Diclofenac	0.065	38	75	340	1,539	3	2	yes
Dilantin	1	38	75	340	4.51	3	1	no
Diltiazem	0.059	60	120	540	9.894	3	1	no
Diuron	0.98	38	75	340	12.39	3	1	no
Erythromycin	0.027	180	360	1,600	12.33	3	1	no
Estradiol – 17 beta	0.087	38	75	340	50.49	3	1	no
Estrone	0.085	38	75	340	17.11	3	1	no
Ethinyl estradiol – 17 alpha	0.085	60	120	540	19.93	3	1	no
Fipronil	0.11	180	360	1,600	241.8	3	1	no
Flumequine	0.31	60	120	540	3.797	3	1	no
Fluoxetine	0.29	60	120	540	489	3	1	no
Gemfibrozil	0.13	38	75	340	1,396	3	2	yes
Ibuprofen	0.9	15	30	140	437	3	1	no
lohexol	0.15	60	120	540	0.9402	3	1	no
lopromide	0.16	60	120	540	0.9404	3	1	no
Ketorolac	0.053	15	30	140	22	3	1	no
Lidocaine	0.098	60	120	540	7.405	3	1	no
Lincomycin	0.038	38	75	340	0.9754	3	1	no
Linuron	1	60	120	540	39.7	3	1	no
Lopressor	0.073	38	75	340	8.04	3	1	no
Meclofenamic acid	0.12	60	120	540	27,180	3	3	yes
Meprobamate	0.55	38	75	340	1.049	3	1	no
Metformin	0.097	15	30	140	0.9417	3	1	no
Methylparaben	0.97	15	30	140	3.972	3	1	no
Naproxen	0.093	15	30	140	131.8	3	1	no

Wind ward

	Estimated Half-life (days) ^a						Total	
COI	Air	Water	Soil	Sediment	Estimated BAF ^a	Persistence Score ^b	Bioaccum. Score ^b	Score ≥ 5? ^b
Nifedipine	0.043	38	75	340	6.168	3	1	no
NDMA	4.2	38	75	340	0.95	3	1	no
Norethisterone	0.059	60	120	540	74.34	3	1	no
OUST® (Sulfameturon,methyl)	0.3	38	75	340	1.313	3	1	no
Oxolinic acid	0.084	38	75	340	1.355	3	1	no
Pentoxifylline	0.35	38	75	340	1.01	3	1	no
PFOA	21	180	360	1,600	7,674	3	3	yes
Perfluoro-1-butanesulfonic acid	76	180	360	1,600	7.321	3	1	no
PFBA	21	60	120	540	14.91	3	1	no
Perfluoro-n-hexanoic acid	21	180	360	1,600	281.6	3	1	no
PFNA	21	180	360	1,600	111,900	3	3	yes
Perfluoropentanoic acid	21	60	120	540	64.9	3	1	no
Primidone	0.31	38	75	340	1.114	3	1	no
Quinoline	0.92	15	30	140	6.306	3	1	no
Salicylic acid	0.82	15	30	140	11.96	3	1	no
Simazine	0.97	60	120	540	11.36	3	1	no
Sucralose	0.2	38	75	340	0.9424	3	1	no
Sulfadiazine	0.38	38	75	340	0.9841	3	1	no
Sulfadimethoxine	0.053	38	75	340	4.51	3	1	no
Sulfamethoxazole	0.053	38	75	340	1.472	3	1	no
TCEP	0.49	60	120	540	3.465	3	1	no
ТСРР	0.15	60	120	540	49.14	3	1	no
TDCPP	0.59	180	360	1,600	113.1	3	1	no
Testosterone	0.091	38	75	340	163.9	3	1	no
Theobromine	0.57	15	30	140	0.9448	3	1	no
Theophylline	0.55	15	30	140	0.9727	3	1	no
Thiabendazole	0.16	15	30	140	21.76	3	1	no
Triclosan	0.66	60	120	540	1,647	3	2	yes
Trimethoprim	0.053	60	120	540	1.229	3	1	no

а Estimated using EPI Suite software; highest BAF among all trophic levels (including biotransformation factor to account for metabolism).

b Scoring system based on TSCA guidance (EPA 2010), described in Section 6.2.3.

perfluoro butanoic acid
perfluoro-n-nonanoic acid
perfluoro octanoic acid
tris(2-carboxyethyl)phosphine

Wind ward

DEA – diethanolamine DEET – N,N-Diethyl-m-toluamide EPI – Estimation Program Interface NDMA – N-Nitroso dimethylamine TCPP – tris(chloropropyl)phosphate TDCPP – tris(1,3-dichloro-2-propyl)phosphate TSCA – Toxic Substances Control Act

The following 18 COIs were selected as COPECs for further consideration: 4-nonylphenol, 17-alpha ethinyl estradiol, 17-beta estradiol, fipronil, sucralose, TCPP, TDCPP, PFOA, perfluoro-1-butanesulfonic acid, PFBA, perfluoro-n-hexanoic acid, PFNA, perfluoropentanoic acid, diclofenac, gemfibrozil, meclofenamic acid, theobromine, and triclosan. A chemical's identification as a COPEC does not imply that environmental exposures to it cause ecological risks, only that such risks have the potential to exist. Further study is needed to understand the potential for ecological risks from environmental exposures to the COPECs. Similarly, persistence and bioaccumulation does not imply ecological risk, only that such COPECs have the potential to be taken up in biota. Further study of the possible effects of the accumulation of persistent and bioaccumulative COPECs in biota tissues is warranted.

6.4 UNCERTAINTY ANALYSIS

The purpose of this section is to provide an evaluation of uncertainties associated with the screening process and results described in earlier sections of Section 6. The following sources of uncertainties are evaluated:

- If a chemical was not detected in any water matrix sampled by LOTT, no benchmark was developed using ECOSAR or compiled from the literature. In some cases, COIs might have been present but below detection limits. In such instances, it is possible that a COI might be toxic at an undetectable concentration.
- EPA and the European Union conducted a large-scale verification study to compare ECOSAR model predictions with empirical data and found ECOSAR to accurately predict acute toxicity thresholds (within one order of magnitude) 71 to 82% of the time for daphnid and fish receptors, respectively (EPA 1994). EPA (2007) recommends using ECOSAR (i.e., using the best available information about chemical structure-activity relationships) to make inferences about COI toxicity thresholds when little or no toxicity data are available. Examples of how ECOSAR has been applied to screen and prioritize chemicals of emerging concern are shown in Howard and Muir (2010), Sanderson et al. (2003), and Diamond et al. (2011). There is uncertainty associated with the use of ECOSAR model predictions rather than experimentally derived data. To protect against false negatives (i.e., COIs screening out when they should be

identified as COPECs), the chronic MATC predicted by ECOSAR for each COI was used, and the lowest MATC was divided by 10.15

- ECOSAR has the potential to underestimate the toxicity (i.e., predict a higher chronic value) of pharmaceutical hormones. Literature-based screening-level benchmarks (Caldwell et al. 2012) were much lower than ECOSAR-based values for estrogenic compounds (i.e., 17-alpha ethinyl estradiol, 17-beta estradiol, and estrone). The lower literature-based screening-level benchmarks were used to screen estrogenic hormones.
- In cases where literature-based NOECs were not available for screening purposes, PNEC, EC05, EC10, and LOEC values were used. PNECs were used only for estrogenic COIs. LOECs can be associated with any level of effect, depending heavily on the experimental design from which the LOEC was derived. To account for potentially high effect levels, LOEC values were divided by a safety factor of 10 for the screen. EC05 and EC10 values are probably more conservative than LOECs, because the lowest observed effect usually affects more than 5 to 10% of the test population (EPA 2013).
- When ECOSAR does not recognize a chemical class,¹⁶ the model provides only a narcosis effect prediction, which the ECOSAR output indicates is potentially non-conservative. In these cases, literature-based values were compiled and used, as available, providing an appropriately conservative bias in the screening process. Suitable literature-based values were not found for meclofenamic acid or perfluoro-1-butanesulfonic acid, so the screen of those two COIs was potentially less conservative than the screen for other COIs.
- Several PFAS benchmarks exceeded the chemical's solubility in water (Appendix C, Table C1). The use of those benchmarks was conservative because it is not possible under normal circumstances (i.e., in the absence of a carrier solvent) for aqueous-phase PFAS concentrations to exceed saturation. PFOA and PFNA were included as COPECs on the basis of persistence and bioaccumulation.

Several ECOSAR-based benchmarks relied on acute-to-chronic ratios to estimate chronic values from results measured in a short-term (acute) exposure, because no suitable chronic data existed from which to derive the benchmark (Appendix C, Table C1). This approach introduced uncertainty associated with extrapolation. The method for deriving acute-to-chronic ratios is described by EPA (1976).

Wind ward

¹⁵ Throughout this document, the word "conservative" is used to describe assumptions or decisions that reduced the probability of a false negative screening outcome.

¹⁶ ECOSAR "classes" correspond to the modes or mechanisms of toxic action corresponding to chemical structures or moieties.

This page intentionally left blank.

7 Summary

Residual chemicals that may remain in reclaimed water after wastewater treatment are being evaluated as part of a multi-year study by LOTT to assess potential ecological risks associated with using reclaimed water for groundwater replenishment. COIs for the study include those found in pharmaceuticals and household and personal care products. This document presents the results of the screening-level evaluation, which identified COIs that will be further evaluated in the risk characterization step of the ERA.

The maximum concentration of each detected COI was compared to a conservative screening-level benchmark. Each COI was also evaluated based on its potential to be persistent and bioaccumulative. COIs were considered to be COPECs for further evaluation in the risk characterization step if they were detected in reclaimed water or porewater at concentrations greater than screening-level benchmarks (Table 7-1), or if they were considered to be highly persistent and bioaccumulative (Table 7-2).

COPEC	Chemical Use Category	Max. Detected Conc. (ng/L)	Screening-level Benchmark (ng/L)	Risk Characterization Approach	
4-nonylphenol	surfactant	510,000	500		
17-alpha ethinyl estradiol	estrogenic hormone	64	0.1	-	
17-beta estradiol	-beta estradiol estrogenic hormone		2	For the aquatic	
Fipronil	insecticide	51	11	community, compare modeled concentrations	
Sucralose	icralose sugar substitute		17,000	in surface water to screening-level	
ТСРР	flame retardant	1,300	1,100	benchmarks and TRVs.	
TDCPP	flame retardant	2,000	1,200		
Theobromine	alkaloid in chocolate and coffee	490	400		

COPEC – chemical of potential ecological concern TCPP – tris(chloropropyl)phosphate TDCPP – tris(1,3-dichloro-2-propyl)phosphate TRV – toxicity reference value

	Chemical Use	Persistence and			
COPEC	Category	Bioaccumulation Score	Risk Characterization Approach		
Chemicals with persi	stence and bioaccu				
Diclofenac	anti-inflammatory	5			
Gemfibrozil	lipid regulator	5			
Meclofenamic acid	anti-inflammatory	6			
PFOA	perfluoro surfactant	6	-		
PFNA	perfluoro surfactant	6	For fish receptors, compare modeled concentrations in fish tissue to TRVs.		
Triclosan	antibacterial	5	For belted kingfisher and river otter,		
Additional PFAS che	micalsª	compare calculated dietary doses to TRVs.			
Perfluoro-1- butanesulfonic acid	perfluoro surfactant	4	- 11.03.		
PFBA	perfluoro surfactant	4	-		
Perfluoro-n-hexanoic acid	perfluoro surfactant	4			
Perfluoropentanoic acid	perfluoro surfactant	4			

Table 7-2. COPECs retained based on bioaccumulation potential

All PFAS detected in reclaimed water or porewater were considered to be COPECs because PFAS are known to be highly bioaccumulative.

COPEC – chemical of potential ecological concern PFAS - per- and polyfluoralkyl substances PFBA - perfluoro butanoic acid

PFNA - perfluoro-n-nonanoic acid PFOA - perfluoro octanoic acid TRV - toxicity reference value

COPECs retained based on benchmark exceedances (Table 7-1) will be evaluated in the risk characterization step by deriving a surface water concentration from a groundwater fate and transport model being developed for the study. Chemicals with modeled concentrations that exceed the screening-level benchmark will be compared to surface water TRVs derived from the literature representing concentrations associated with a 20% reduction in growth, reproduction, or survival.

COPECs retained based on bioaccumulation potential (Table 7-2) will be evaluated in the risk characterization step in one of two ways:

- 1. A fish tissue concentration will be derived for each chemical using a BAF or BCF. The modeled fish tissue concentration will be compared to a fish tissue TRV derived from the literature representing a concentration associated with a 20% reduction in growth, reproduction, or survival.
- 2. Dietary exposure will be calculated for aquatic-dependent wildlife (i.e., belted kingfisher and river otter) using BAFs or BCFs to estimate chemical concentrations in prey and dietary exposure assumptions from the literature.

Calculated dietary doses will be compared to dietary TRVs derived from the literature representing doses associated with a 20% reduction in growth, reproduction, or survival.

Wind ward

This page intentionally left blank.

8 References

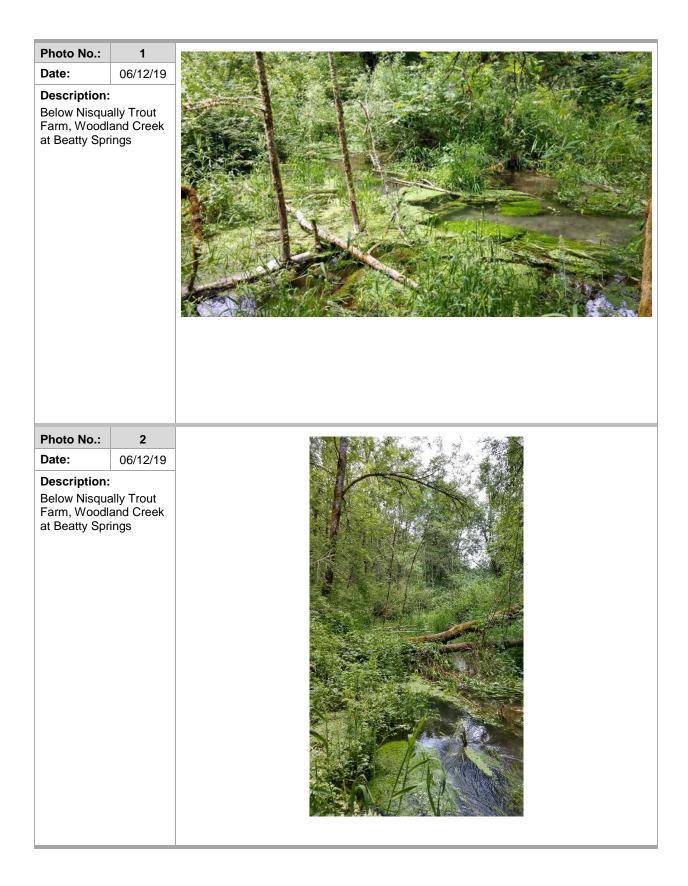
- Adeel M, Xong X, Wang Y, Francis D, Yang Y. 2017. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107-119.
- Caldwell DJ, Mastrocco F, Anderson PD, Lange R, Sumpter JP. 2012. Predicted-noeffect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ Toxicol Chem 31(6):1396-1406.
- Cheng W, Ng CA. 2018. Predicting relative protein affinity of novel per- and polyfluoroalkyl sumstances (PFASs) by an efficient molecular dynamics approach. Environ Sci Tech 52:7972-7980.
- City of Olympia. 2018. Draft storm and surface water plan. Chapter 8. Aquatic habitat. City of Olympia, Water Resources, Olympia, WA.
- Diamond JM, Latimer HA, II, Munkittrick KR, Thornton KW, Bartell SM, Kidd KA. 2011. Prioritizing contaminants of emerging concern for ecological screening assessments. Environ Toxicol Chem 30(11):2385-2394.
- Dobos A, Farber D, Hoelzer H, Jones L, Joy J, Lahey W, Larsen J, Ridling J, Smoot C, Trautman J. 1977. Woodland Creek. A baseline study. The final report to the Washington State Department of Game. The Evergreen State College, Olympia, WA.
- Ebele AJ, Abdallah MA-E, Harrad S. 2017. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1-16.
- Ecology. 2005. Nisqually River Basin fecal coliform bacteria and dissolved oxygen total maximum daily load study. Publication Number: 05-03-002. Washington State Department of Ecology, Olympia, WA.
- Ecology. 2017. Henderson Inlet fecal coliform total maximum daily load. Water quality effectiveness monitoring report. Washington State Department of Ecology, Olympia, WA.
- Ecology. 2019. Washington State Water Quality Assessment 303(d)/305(b) List [online]. Washington State Department of Ecology. Available from: <u>https://apps.ecology.wa.gov/approvedwqa/ApprovedSearch.aspx</u>.
- EPA. 1976. Quality criteria for water (Red book). EPA 440/9-76-023. US Environmental Protection Agency, Washington, DC.
- EPA. 1993. Wildlife exposure factors handbook. EPA/600/R-93/187a. Office of Research and Development, US Environmental Protection Agency, Washington, DC.
- EPA. 1994. U.S. EPA/EC Joint project on the evaluation (quantitative) structure activity relationships. US Environmental Protection Agency.
- EPA. 1997a. Ecological risk assessment guidance for Superfund: Process for designing and conducting ecological risk assessments. EPA/540/R-97/006. Interim final.

Environmental Response Team, US Environmental Protection Agency, Edison, NJ.

- EPA. 1997b. EPA Region 10 supplemental ecological risk assessment guidance for Superfund. EPA/910/R-97/005. Region 10 Office of Environmental Assessment Risk Evaluation Unit, US Environmental Protection Agency, Seattle, WA.
- EPA. 1998. Guidelines for ecological risk assessment. EPA/630/R-95/002 F. Risk Assessment Forum, US Environmental Protection Agency, Washington, DC.
- EPA. 2007. Science Advisory Board (SAB) review of the Estimation Programs Interface Suite (EPI SuiteTM). US Environmental Protection Agency, Washington, DC.
- EPA. 2010. TSCA new chemical program (NCP). Chemical categories. US Environmental Protection Agency, Washington, DC.
- EPA. 2012. TSCA work plan chemicals: methods document. US Environmental Protection Agency, Office of Pollution Prevention and Toxics.
- EPA. 2013. Aquatic life ambient water quality criteria for ammonia freshwater. 2013. EPA 822-R-13-001. US Environmental Protection Agency, Office of Water, Washington, DC.
- EPA. 2016. Contaminants of emerging concern including pharmaceuticals and personal care products [online]. US Environmental Protection Agency. Updated September 22, 2016. Available from: https://www.epa.gov/wqc/contaminants-emerging-concern-includingpharmaceuticals-and-personal-care-products.
- EPA. 2018. ECOTOXicology database [online database]. US Environmental Protection Agency, Available from: https://cfpub.epa.gov/ecotox/.
- ESA Adolfson. 2008. Lacey, Olympia, and Tumwater shoreline analysis & characterization report. Environmental Sciences Associates.
- Haub A, Christensen E, Lund J, Stewart J, Graham J, Barham J, Roush J, Keehan L, Goodman M, Thompson S, Barclift S, Clark S. 2018. Storm and surface water plan. City of Olympia, Water Resources, Olympia, WA.
- HDR. 2017a. Groundwater quality characterization (Task 1.1). LOTT Clean Water Alliance reclaimed water infiltration study. Technical memorandum. HDR, Olympia, WA.
- HDR. 2017b. Surface water quality characterization (Task 1.2). LOTT Clean Water Alliance reclaimed water infiltration study. Technical memorandum. HDR, Olympia, WA.
- HDR. 2017c. Wastewater and reclaimed water quality characterization (Task 1.3). LOTT Clean Water Alliance reclaimed water infiltration study. Technical memorandum. HDR, Olympia, WA.
- HDR. 2019. Tracer test and water quality monitoring (Task 2.1.3). LOTT Clean Water Alliance reclaimed water infiltration study. Report. HDR, Olympia, WA.
- Howard PH, Muir DCG. 2010. Identifying new persistent and bioaccumulative organics among chemicals in commerce. Environ Sci Tech 44:2277-2285.

- Johnson AW, Caldwell JE. 1992. Appendix H: Woodland Creek fish habitat analysis. Analysis of existing fish habitat in a portion of Woodland Creek, Thurston County, Washington. Aquatic Resource Consultants and J.E. Caldwell & Associates.
- Kelly JF, Bridge ES, Hamas MJ. 2009. Belted kingfisher (*Megaceryle alcyon*), The Birds of North American Online (Poole, A, Ed.) [online]. Cornell Laboratory of Ornithology, Ithaca, NY. Available from: <u>http://bna.birds.cornell.edu/bna/species/084/articles/introduction</u>.
- Maruya KA, Schlenk D, Anderson PD, Denslow ND, Drewes JE, Olivieri AW, Scott GI, Snyder SA. 2013. An adaptive, comprehensive monitoring strategy for chemicals of emerging concern (CECs) in California's aquatic ecosystems. Integr Environ Assess Manag 10(1):69-77.
- Mayo-Bean K, Moran-Bruce K, Meylan W, Ranslow P, Lock M, Nabholz JV, Von Runnen J, Cassidy LM, Tunkel J. 2017. Methodology document for the ECOlogical Structure-Activity Relationship Model (ECOSAR). Class program. Estimating toxicity of industrial chemicals to aquatic organisms using the ECOSAR (Ecological Structure-Activity Relationship) class program. Version 2.0. Office of Pollution Prevention and Toxics, SRC, Inc., and Consortium for Environmental Risk Management, LLC.
- NIH. 2019. PubChem [online]. National Center for Biotechnology Information, Bethesda, Maryland. Available from: <u>https://pubchem.ncbi.nlm.nih.gov/</u>.
- Prose BL. 1985. Habitat suitability index models: belted kingfisher. Biol Rep 82(10.87). US Fish and Wildlife Service, Washington, DC.
- Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR. 2003. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Let 144:383-395.
- Tabbutt V, Ambrogi M. 2013. Estimates of current and future impervious area and forest lands vulnerable to urban conversion for watershed based land use planning. Thurston Regional Planning Council.
- The Cornell Lab of Ornithology. 2011. All about birds [online]. Cornell University, Ithaca, NY. [Cited August 2011.] Available from:

http://www.allaboutbirds.org/Page.aspx?pid=1189.


- Thurston County. 1994. McAllister/Eaton Creek comprehensive drainage basin plan. Thurston County Department of Water and Waste Management Storm and Surface Water Program, Olympia, WA.
- Thurston County. 2004. Salmon protection and restoration plan for Water Resource Inventory Area 13, Deschutes. Thurston Conservation District.
- Thurston County. 2007. Henderson Inlet watershed characterization report. Thurston County Geodata Center, Olympia, WA.
- Thurston County. 2013a. Map 2: Thurston County basins in WRIAs 13 & 14. Thurston Regional Planning Council.

Wind ward

- Thurston County. 2013b. Nisqually Watershed Characterization. Final. Chapter Seven. McAllister Creek Study Area. Thurston County.
- Thurston County. 2013c. Thurston County shoreline master program update. Inventory and characterization report. Final draft. Thurston County Planning Department, Olympia, WA.
- Thurston County. 2019. Thurston County GeoData maps [online]. Thurston County Permitting and Land Use, Olympia, WA. Available from: file://mink/company/Projects/LOTT/Documents/Thurston%20County%202 019_land%20use%20and%20permitting.html.
- USFWS. 2005. Nisqually National Wildlife Refuge comprehensive conservation plan. US Fish and Wildlife Service.
- Woo I, Davis M, De La Cruz S. 2017. Nisqually River Delta summary: early phase restoration performance and prey contributions to juvenile Chinook salmon within a habitat mosaic. Summary report to: Estuarine and Salmon Restoration Program. Project # 13-1583P. US Geological Survey.

APPENDIX A. SITE VISIT PHOTOS FROM WOODLAND AND MCALLISTER CREEKS

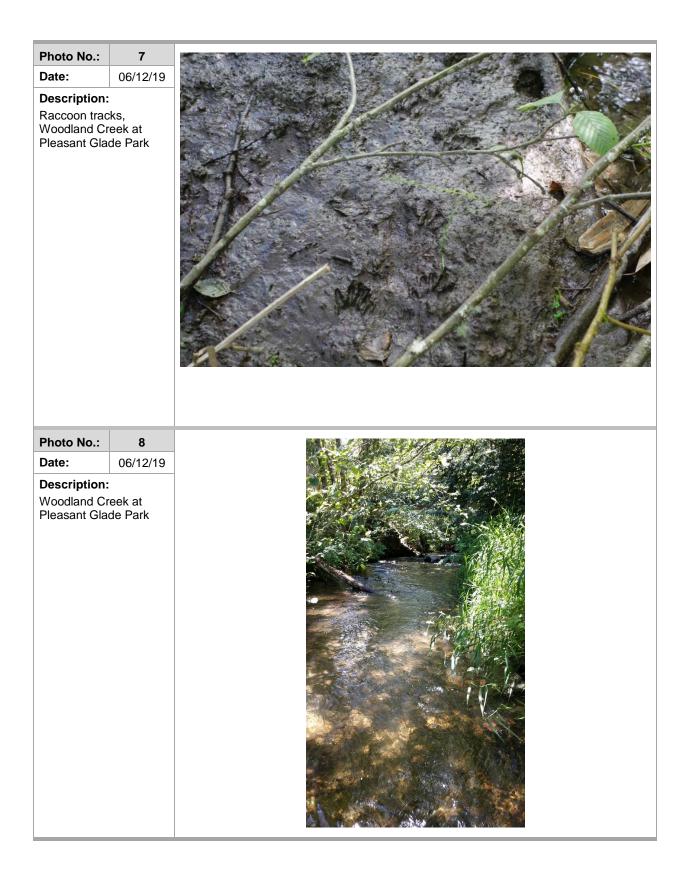
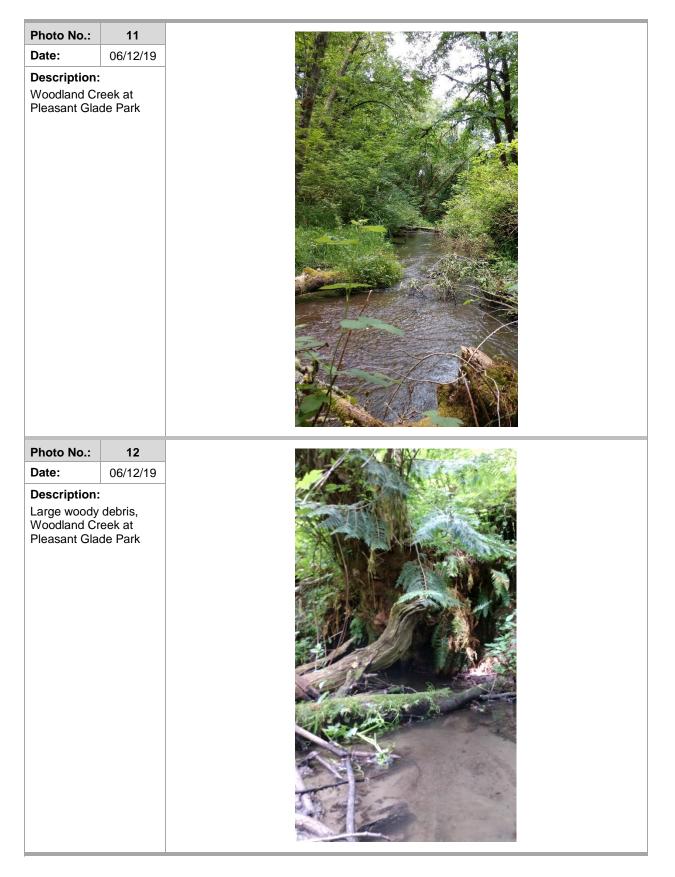


Photo No.:	3	
Date:	06/12/19	
Description: Caddisfly larv Tricoptera), V Creek at Bea	/a (Order Voodland tty Springs	
Photo No.:	4	
Date:	06/12/19	
Description: Woodland Cr Beatty Spring	eek at	


Photo No.:	5	
Date:	06/12/19	
Date: Description: Woodland Cr Beatty Spring	eek at	
Photo No.:	6	
Date:	06/12/19	
Description: Woodland Cr Pleasant Gla	eek at	

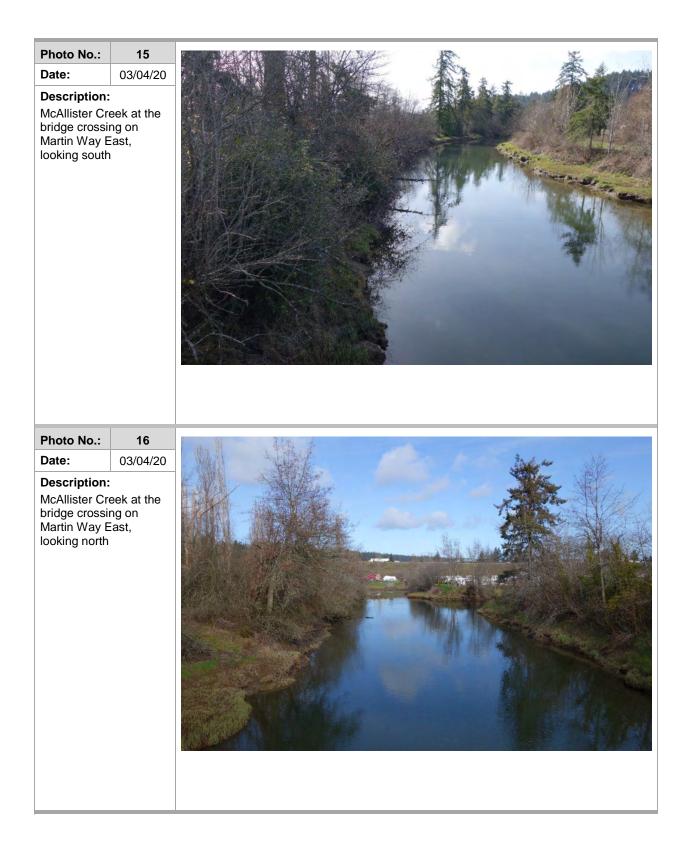


Photo No.:	17	
Date:	03/04/20	
Description: Canine (likely and raccoon along the left McAllister Cr the bridge cro Martin Way E	y coyote) tracks bank of eek near ossing on	
Photo No.:	18	autor and a second
Date:	03/04/20	and the second sec
Description: Looking sout the Nisqually Boardwalk To the Nisqually Wildlife Refu- the mouth of Creek and th bluff west of	hwest from Estuary rail (within National ge) toward McAllister e forested	

Invertebrate Group	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Amphipoda	<i>Hyalella</i> spp.	yes	yes	Dobos et al. (1977); Woo et al. (2017)
Coleoptera	Hydaticus spp.	yes	nd	Dobos et al. (1977)
(beetles)	Zaitzevia spp.	yes	nd	
Copepoda	Canthocamptus spp.	yes	yes	Dobos et al. (1977); Woo et al. (2017)
	Pacifastacus leniusculus	yes	nd	Haub et al. (2018)
	Hemigrapsus oregonensis	nd	yes	
Decapoda (crayfish, shrimp, crabs)	Epialtus productus	nd	yes	Thursday Ocuraty (4004)
	Upogebia pugettensis	nd	yes	Thurston County (1994)
	Neotrypaea californiensis	nd	yes	
	<i>Tanytarsus</i> spp. (formerly <i>Calopsectra</i> spp.)	yes	nd	
Distance Obiese seriels	Hemerodromia spp.	yes	nd	
Diptera – Chironomidae (midges)	Metriocnemus spp.	yes	nd	Dobos et al. (1977); Windward 2019 site survey
	Palpomyia spp.	yes	nd	
	Pentaneura spp.	yes	nd	
Ephemeroptera	family Baetidae	yes	nd	
(mayflies)	Paraleptophlebia spp.	yes	nd	Dobos et al. (1977)
	family Hygrobatidae	yes	nd	
Hydrachnidia (water mites)	family Libertiidae	yes	nd	Dobos et al. (1977)
	family Sperchonidae	yes	nd	
lsopoda (water sowbugs)	Asellus spp.	yes	nd	Dobos et al. (1977)

Table B1. Benthic invertebrates potentially present in Woodland Creek and McAllister Creek

Invertebrate Group	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
	Physa spp.	yes	nd	Debes at al. (1077): Windward 2010 site survey
	family Sphaeriidae	yes	nd	Dobos et al. (1977); Windward 2019 site survey
	Macoma inconspicua	nd	yes	
Mollusca	Macoma nasuta	nd	yes	
(clams and snails)	Mya arenaria	nd	yes	
	Mytilus edulis	nd	yes	Thurston County (1994)
	Leukoma staminea	nd	yes	
	Cryptomya californica	nd	yes	
Odonata (damselflies)	Coenagrionidae	nd	yes	USFWS (2005)
Oligochaeta (annelid worms)	not identified	yes	yes	Dobos et al. (1977); Woo et al. (2017)
	Lumbrineris spp.	nd	yes	
	Nephtys spp.	nd	yes	
Polychaeta	Neanthes virens	nd	yes	
(paddle-footed annelids)	family Polynoidae	nd	yes	Thurston County (1994)
	family Phyllodocidae	nd	yes	
	Glycera americana	nd	yes	

Table B1. Benthic invertebrates potentially present in Woodland Creek and McAllister Creek

Invertebrate Group	Scientific Name	Woodland Creek	McAllister Creek	Source ^a		
	Allocapnia spp.	yes	nd			
	Alloperla spp.	yes	nd			
Plecoptera (stoneflies)	family Nemouridae	yes	nd	Dobos et al. (1977); Windward 2019 site survey		
	family Peltoperlidae	yes	nd			
	Isogenus spp.	yes	nd			
	Glossosoma spp.	yes	nd			
	Hydropsyche spp.	yes	nd			
Trichoptera (caddisflies)	Limnephilus spp.	yes	nd	Dobos et al. (1977); Windward 2019 site survey		
	Rhyacophila spp.	yes	nd			
	Phryganeidae	nd	yes	USFWS (2005)		

Table B1. Benthic invertebrates potentially present in Woodland Creek and McAllister Creek

^a Sources for Woodland Creek include Dobos et al. (1977), ESA Adolfson (2008), Haub et al. (2018), Windward 2019 site survey, and Woo et al. (2017); sources for McAllister Creek include Thurston County (1994), Thurston County (2013), and USFWS (2005).

nd – no data

USFWS – US Fish and Wildlife Service

Windward – Windward Environmental LLC

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
American shad	Alosa sapidissima	nd	yes	USFWS (2005)
Arrow goby	Clevelandia ios	nd	yes	USFWS (2005)
Bay goby	Lepidogobius lepidus	nd	yes	USFWS (2005)
Bay pipefish	Syngnathus leptorhynchus	nd	yes	USFWS (2005)
Black crappie	Pomoxis nigromaculatus	nd	yes	USFWS (2005)
Blacktip poacher	Xeneretmus latifrons	nd	yes	USFWS (2005)
Bluegill	Lepomis macrochirus	yes	nd	Haub et al. (2018)
Brown bullhead	Ameiurus nebulosus	yes	yes	Haub et al. (2018); USFWS (2005)
Brown rockfish	Sebastes auriculatus	nd	yes	USFWS (2005)
Buffalo sculpin	Enophrys bison	nd	yes	USFWS (2005)
Bull trout	Salvelinus confluentus	nd	yes	USFWS (2005)
Butter sole	Pleuronectes isolepsis	nd	yes	USFWS (2005)
Cabezon	Scorpaenichthys marmoratus	nd	yes	USFWS (2005)
Calico sculpin	Clinocottus embryum	nd	yes	USFWS (2005)
Chinook salmon	Oncorhynchus tshawytscha	yes	yes	ESA Adolfson (2008); Haub et al. (2018); Thurston County (2013); USFWS (2005)
Chum salmon	Oncorhynchus keta	yes	yes	Dobos et al. (1977); ESA Adolfson (2008); Haub et al. (2018); Thurston County (2013); USFWS (2005)
C-O sole	Pleuronichthys coenosus	nd	yes	USFWS (2005)
Coastrange sculpin	Cottus aleuticus	nd	yes	USFWS (2005)
Coho salmon	Oncorhynchus kisutch	yes	yes	Dobos et al. (1977); ESA Adolfson (2008); Haub et al. (2018); Thurston County (2013); USFWS (2005)
Copper rockfish	Sebastes caurinus	nd	yes	USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Crescent gunnel	Pholis laeta	nd	yes	USFWS (2005)
Cutthroat trout	Oncorhynchus clarkii	yes	yes	Dobos et al. (1977); ESA Adolfson (2008); Haub et al. (2018); Thurston County (2013); USFWS (2005)
Dace	Leuciscus leuciscus	yes	nd	Haub et al. (2018)
Dolly varden	Salvelinus malma	nd	yes	USFWS (2005)
Dover sole	Microstomus pacificus	nd	yes	USFWS (2005)
English sole	Pleuronectes vetulus	nd	yes	USFWS (2005)
Flathead sole	Hippoglossoides elassodon	nd	yes	USFWS (2005)
Great sculpin	Myoxocephalus polyacanthocephalus	nd	yes	USFWS (2005)
Grunt sculpin	Rhamphocottus richardsoni	nd	yes	USFWS (2005)
High cockscomb	Anoplarchus purpurescens	nd	yes	USFWS (2005)
Kelp greenling	Hexagrammos decagrammus	nd	yes	USFWS (2005)
Kokanee	Oncorhynchus nerka	yes	yes	Haub et al. (2018); Thurston County (2013);USFWS (2005)
Largemouth bass	Micropterus salmoides	yes	yes	Haub et al. (2018); USFWS (2005)
Large-scale sucker	Catostomus macrocheilus	yes	yes	Haub et al. (2018); USFWS (2005)
Longnose dace	Rhinichythys cataractae	nd	yes	USFWS (2005)
Manacled sculpin	Synchirus gilli	nd	yes	USFWS (2005)
Mountain whitefish	Prosopium williamsoni	nd	yes	USFWS (2005)
Northern clingfish	Gobiesox meandricus	nd	yes	USFWS (2005)
Northern spearnose poacher	Agonopsis vulsa	nd	yes	USFWS (2005)
Olympic mud minnow	Novumbra hubbsi	yes	nd	Haub et al. (2018)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Pacific cod	Gadus macrocephalus	nd	yes	USFWS (2005)
Pacific hake	Merluccius productus	nd	yes	USFWS (2005)
Pacific herring	Clupea harengus	nd	yes	USFWS (2005)
Pacific lamprey	Lampetra tridentata	nd	yes	USFWS (2005)
Pacific sand lance	Ammodytes personatus	yes	yes	Haub et al. (2018); USFWS (2005)
Pacific sanddab	Citharichthys sordidus	nd	yes	USFWS (2005)
Pacific snake prickleback	Lumpenus sagitta	nd	yes	USFWS (2005)
Pacific staghorn sculpin	Leptocottus armatus	nd	yes	USFWS (2005)
Pacific tomcod	Microgadus proximus	nd	yes	USFWS (2005)
Padded sculpin	Artedius fenestralis	nd	yes	USFWS (2005)
Painted greenling	Oxylebius pictus	nd	yes	USFWS (2005)
Penpoint gunnel	Apodichthys flavidus	nd	yes	USFWS (2005)
Pile perch	Rhacochilus vacca	nd	yes	USFWS (2005)
Pink salmon	Oncorhynchus gorbuscha	nd	yes	Thurston County (2013); USFWS (2005)
Plainfin midshipman	Porichthys notatus	nd	yes	USFWS (2005)
Prickly sculpin	Cottus asper	nd	yes	USFWS (2005)
Pumpkinseed	Lepomis gibbosus	nd	yes	USFWS (2005)
Pygmy poacher	Odontopyxis trispinosa	nd	yes	USFWS (2005)
Quillback rockfish	Sebastes maliger	nd	yes	USFWS (2005)
Rainbow trout/steelhead	Oncorhynchus mykiss	yes	yes	Dobos et al. (1977); ESA Adolfson (2008); Haub et al. (2018); Thurston County (2013); USFWS (2005)
Red Irish lord	Hemilepidotus hemilepidotus	nd	yes	USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Sourceª
Reticulate/riffle sculpin	Cottus perplexus/gulosus	nd	yes	USFWS (2005)
Rex sole	Errex zachirus	nd	yes	USFWS (2005)
Ringtail snailfish	Liparis rutteri	nd	yes	USFWS (2005)
River lamprey	Lampetra ayresi	nd	yes	USFWS (2005)
Rock greenling	Hexagrammos lagocephalus	nd	yes	USFWS (2005)
Rock sole	Pleuronectes bilineata	nd	yes	USFWS (2005)
Rockweed gunnel	Apodichthys fucorum	nd	yes	USFWS (2005)
Roughback sculpin	Chitonotus pugetensis	nd	yes	USFWS (2005)
Sablefish	Anoplopoma fimbria	nd	yes	USFWS (2005)
Saddleback gunnel	Pholis ornata	nd	yes	USFWS (2005)
Sailfin sculpin	Nautichthys oculofasciatus	nd	yes	USFWS (2005)
Sand sole	Psettichthys melanostictus	nd	yes	USFWS (2005)
Sculpin	Cottus spp.	yes	nd	Dobos et al. (1977); Haub et al. (2018)
Sharpnose sculpin	Clinocottus acuticeps	nd	yes	USFWS (2005)
Shiner perch	Cymatogaster aggregata	nd	yes	USFWS (2005)
Shorthead sculpin	Cottus confusus	nd	yes	USFWS (2005)
Silverspotted sculpin	Blepsias cirrhosus	nd	yes	USFWS (2005)
Slender cockscomb	Anoplarchus insignis	nd	yes	USFWS (2005)
Smoothhead sculpin	Artedius lateralis	nd	yes	USFWS (2005)
Soft sculpin	Psychrolutes sigalutes	nd	yes	USFWS (2005)
Speckled sanddab	Citharichthys stigmaeus	nd	yes	USFWS (2005)
Spiny dogfish	Squalus acanthias	nd	yes	USFWS (2005)

Wind ward

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Spotted ratfish	Hydrolagus colliei	nd	yes	USFWS (2005)
Starry flounder	Platichythys stellatus	nd	yes	USFWS (2005)
Striped seaperch	Embiotoca lateralis	nd	yes	USFWS (2005)
Sturgeon poacher	Agonus acipenserinus	nd	yes	USFWS (2005)
Surf smelt	Hypomesus pretiosus	yes	yes	Haub et al. (2018); USFWS (2005)
Tadpole sculpin	Psychrolutes paradoxus	nd	yes	USFWS (2005)
Three-spine stickleback	Gasterosteus aculeatus	yes	yes	Dobos et al. (1977); Haub et al. (2018); USFWS (2005)
Tidepool sculpin	Oligocottus maculosus	nd	yes	USFWS (2005)
Torrent sculpin	Cottus rhotheus	nd	yes	USFWS (2005)
Tubenose poacher	Pallasina barbata	nd	yes	USFWS (2005)
Tube-snout	Aulorhynchus flavidus	nd	yes	USFWS (2005)
Walleye pollock	Theregra chalcogrammus	nd	yes	USFWS (2005)
Western brook lamprey	Lampetra planeri	yes	yes	Haub et al. (2018); USFWS (2005)
White sturgeon	Acipenser transmontanus	nd	yes	USFWS (2005)
White-spotted greenling	Hexagrammos stelleri	nd	yes	USFWS (2005)
Yellow perch	Perca flavescens	yes	yes	Haub et al. (2018); USFWS (2005)

^a Sources for Woodland Creek include Dobos et al. (1977), ESA Adolfson (2008), and Haub et al. (2018); sources for McAllister Creek include Thurston County (2013) and USFWS (2005).

nd – no data

USFWS – US Fish and Wildlife Service

Windward – Windward Environmental LLC

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
American avocet	Recurvirostra americana	nd	yes	USFWS (2005)
American bittern	Botaurus lentiginosus	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
American coot	Fulica americana	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
American crow	Corvus brachyrhynchos	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2019 site survey; Windward 2020 site survey
American golden plover	Pluvialis dominica	nd	yes	Thurston County (1994); USFWS (2005)
American goldfinch	Spinus tristis (Carduelis tristis)	yes	yes	Thurston County (1994); USFWS (2005); Windward 2019 site survey
American kestrel	Falco sparverius	yes	yes	Dobos et al. (1977); Thurston County (1994)
American pipit	Anthus rubescens	nd	yes	USFWS (2005)
American robin	Turdus migratorius	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2019 site survey
American white pelican	Pelecanus erythrorhynchos	nd	yes	USFWS (2005)
American wigeon	Anas americana	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Ancient murrelet	Synthliboramphus antiquus	nd	yes	Thurston County (1994); USFWS (2005)
Anna 's hummingbird	Calypte anna	nd	yes	Thurston County (1994); Windward 2020 site survey
Audubon's warbler	Setophaga coronata	yes	nd	Dobos et al. (1977)
Baird 's sandpiper	Calidris bairdii	nd	yes	Thurston County (1994); USFWS (2005)
Bald eagle	Haliaeetus leucocephalus	yes	yes	Dobos et al. (1977); Thurston County (1994); Thurston County (2013); USFWS (2005); Windward 2020 site survey
Band-tailed pigeon	Patagioenas fasciata (Columba fasciata)	nd	yes	Thurston County (1994); Thurston County (2013)
Bank swallow	Riparia riparia	nd	yes	USFWS (2005)

Wind ward

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Barn owl	Tyto alba	nd	yes	Thurston County (1994); USFWS (2005)
Barn swallow	Hirundo rustica	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Barrow's goldeneye	Bucephala islandica	nd	yes	Thurston County (1994); USFWS (2005)
Belted kingfisher	Megaceryle alcyon	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Bewick's wren	Thryomanes bewickii	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Black brant	Branta bernicla nigricans	nd	yes	Thurston County (1994)
Black scoter	Melanitta nigra	nd	yes	Thurston County (1994); USFWS (2005)
Black swift	Cypseloides niger	nd	yes	USFWS (2005)
Black-bellied plover	Pluvialis squatarola	nd	yes	Thurston County (1994); USFWS (2005)
Black-billed magpie	Pica hudsonia	nd	yes	USFWS (2005)
Black-capped chickadee	Poecile atricapillus (Parus atricapillus)	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2020 site survey
Black-headed grosbeak	Pheucticus melanocephalus	nd	yes	Thurston County (1994); USFWS (2005)
Black-headed gull	Larus ridibundus	nd	yes	USFWS (2005)
Black-necked stilt	Himantopus mexicanus	nd	yes	USFWS (2005)
Black-throated grey warbler	Setophaga nigrescens (Dendroica nigrescens)	nd	yes	Thurston County (1994); USFWS (2005)
Blue grouse	Dendragapus obscurus	yes	yes	Dobos et al. (1977); Thurston County (1994)
Blue-winged teal	Anas discors	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Bohemian waxwing	Bombycilla garrulus	nd	yes	Thurston County (1994)
Bonaparte's gull	Chroicocephalus philadelphia	nd	yes	Thurston County (1994); USFWS (2005)
Brandt's cormorant	Phalacrocorax penicillatus	nd	yes	Thurston County (1994); USFWS (2005)

Wind ward

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Brant	Branta bernicla	nd	yes	USFWS (2005)
Brewer's blackbird	Euphagus cyanocephalus	nd	yes	Thurston County (1994); USFWS (2005)
Brown creeper	Certhia americana	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2019 site survey; Windward 2020 site survey
Brown pelican	Pelecanus occidentalis	nd	yes	USFWS (2005)
Brown-headed cowbird	Molothrus ater	nd	yes	USFWS (2005)
Bufflehead	Bucephala albeola	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
California gull	Larus californicus	nd	yes	Thurston County (1994); USFWS (2005)
California quail	Callipepla californica	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Canada goose	Branta canadensis	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Canvasback	Aythya valisineria	nd	yes	Thurston County (1994); USFWS (2005)
Caspian tern	Hydroprogne caspia (Sterna caspia)	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Cassin's vireo	Vireo cassinii	nd	yes	USFWS (2005)
Cedar waxwing	Bombycilla cedrorum	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2019 site survey;
Chestnut-backed chickadee	Poecile rufescens (Parus rufescens)	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Chipping sparrow	Spizella passerina	nd	yes	Thurston County (1994); USFWS (2005)
Cinnamon teal	Anas cyanoptera	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Cliff swallow	Petrochelidon pyrrhonota	nd	yes	Thurston County (1994); USFWS (2005)
Common bushtit	Psaltriparus minimus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Common goldeneye	Bucephala clangula	nd	yes	Thurston County (1994); USFWS (2005); Windward 2020 site survey
Common loon	Gavia immer	nd	yes	Thurston County (1994); USFWS (2005)
Common merganser	Mergus merganser	nd	yes	Thurston County (1994); USFWS (2005); Windward 2020 site survey
Common murre	Uria aalge	nd	yes	Thurston County (1994); USFWS (2005)
Common nighthawk	Chordeiles minor	nd	yes	Thurston County (1994); USFWS (2005)
Common raven	Corvus corax	nd	yes	Thurston County (1994)
Common snipe	Gallinago gallinago	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Common tern	Sterna hirundo	nd	yes	Thurston County (1994); USFWS (2005)
Common yellowthroat	Geothlypis trichas	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Cooper's hawk	Accipiter cooperii	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2020 site survey
Double-crested cormorant	Phalacrocorax auritus	nd	yes	Thurston County (1994); USFWS (2005)
Downy woodpecker	Picoides pubescens	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Dunlin	Calidris alpina	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Eared grebe	Podiceps nigricollis	nd	yes	Thurston County (1994); USFWS (2005)
European widgeon	Anas penelope	nd	yes	Thurston County (1994); USFWS (2005)
Evening grosbeak	Coccothraustes vespertinus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Fox sparrow	Passerella iliaca	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Franklin's gull	Larus pipixcan	nd	yes	Thurston County (1994); USFWS (2005)
Gadwall	Mareca strepera (Anas strepera)	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Glaucous gull	Larus hyperboreus	nd	yes	Thurston County (1994); USFWS (2005)
Glaucous-winged gull	Larus glaucescens	nd	yes	Thurston County (1994); USFWS (2005)
Golden-crowned kinglet	Regulus satrapa	nd	yes	Thurston County (1994); USFWS (2005)
Golden-crowned sparrow	Zonotrichia atricapilla	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Goshawk	Accipiter gentilis	nd	yes	Thurston County (1994); USFWS (2005)
Great blue heron	Ardea herodias	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); USFWS (2005)
Great egret	Ardea alba	nd	yes	Thurston County (1994); USFWS (2005)
Great horned owl	Bubo virginianus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Greater scaup	Aythya marila	nd	yes	Thurston County (1994); USFWS (2005)
Greater yellowlegs	Tringa melanoleuca	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Green heron	Butorides virescens	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Green-winged teal	Anas carolinensis	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Gyrfalcon	Falco rusticolus	yes	yes	Dobos et al. (1977); USFWS (2005)
Hairy woodpecker	Picoides villosus	nd	yes	Thurston County (1994); USFWS (2005)
Harris' sparrow	Zonotrichia querula	nd	yes	Thurston County (1994); USFWS (2005)
Heerman's gull	Larus heermanni	nd	yes	Thurston County (1994); USFWS (2005)
Hermit thrush	Catharus guttatus	nd	yes	Thurston County (1994); USFWS (2005)
Herring gull	Larus argentatus	nd	yes	Thurston County (1994); USFWS (2005)
Hooded merganser	Lophodytes cucullatus	nd	yes	Thurston County (1994); USFWS (2005)
Horned grebe	Podiceps auritus	nd	yes	Thurston County (1994); USFWS (2005)

Wind ward

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Horned lark	Eremophila alpestris	nd	yes	USFWS (2005)
House finch	Haemorhous mexicanus (Carpodacus mexicanus)	nd	yes	Thurston County (1994); USFWS (2005)
House wren	Troglodytes aedon	nd	yes	USFWS (2005)
Hutton's vireo	Vireo huttoni	nd	yes	Thurston County (1994); USFWS (2005)
Killdeer	Charadrius vociferus	nd	yes	Thurston County (1994); USFWS (2005)
Laysan albatross	Phoebastria immutabilis	nd	yes	USFWS (2005)
Lazuli bunting	Passerina amoena	nd	yes	USFWS (2005)
Leach's storm-petrel	Oceanodroma leucorhoa	nd	yes	USFWS (2005)
Least sandpiper	Calidris minutilla	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Lesser scaup	Aythya affinis	nd	yes	Thurston County (1994); USFWS (2005)
Lesser yellowlegs	Tringa flavipes	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Lewis' woodpecker	Melanerpes lewis	nd	yes	USFWS (2005)
Lincoln's sparrow	Melospiza lincolnii	nd	yes	Thurston County (1994); USFWS (2005)
Long-billed dowitcher	Limnodromus scolopaceus	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Long-billed marsh wren	Cistothorus palustris	yes		Dobos et al. (1977)
Long-eared owl	Asio otus	nd	yes	USFWS (2005)
MacGillivray's warbler	Geothlypis tolmiei	nd	yes	Thurston County (1994);
Mallard	Anas platyrhynchos	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); USFWS (2005); Windward 2020 site survey
Marbled godwit	Limosa fedoa	nd	yes	Thurston County (1994)
Marbled murrelet	Brachyramphus marmoratus	nd	yes	Thurston County (1994); USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Marsh wren	Cistothorus palustris	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Merlin	Falco columbarius	nd	yes	Thurston County (1994); USFWS (2005)
Mew gull	Larus canus	nd	yes	Thurston County (1994); USFWS (2005)
Mountain quail	Oreortyx pictus	yes	yes	WDFW (2019) (PHS); USFWS (2005)
Mourning dove	Zenaida macroura	nd	yes	Thurston County (1994); USFWS (2005); Windward 2020 site survey
Nashville warbler	Vermivora ruficapilla	nd	yes	USFWS (2005)
Northern bobwhite	Colinus virginianus	nd	yes	USFWS (2005)
Northern harrier	Circus cyaneus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Northern mockingbird	Mimus polyglottos	nd	yes	USFWS (2005)
Northern oriole	lcterus bullockii	nd	yes	Thurston County (1994); USFWS (2005)
Northern pintail	Anas acuta	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Northern pygmy-Owl	Glaucidium gnoma	nd	yes	USFWS (2005)
Northern rough-winged swallow	Stelgidopteryx serripennis	yes	yes	Haub et al. (2018); USFWS (2005)
Northern shoveler	Anas clypeata	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Northern shrike	Lanius excubitor	nd	yes	Thurston County (1994); USFWS (2005)
Oldsquaw	Clangula hyemalis	nd	yes	Thurston County (1994); USFWS (2005)
Olive-sided flycatcher	Contopus cooperi	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Orange-crowned warbler	Leiothlypis celata (Vermivora celata)	nd	yes	Thurston County (1994); USFWS (2005)
Oregon junco	Junco hyemalis	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Osprey	Pandion haliaetus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Pacific-slope flycatcher	Empidonax difficilis	yes	yes	USFWS (2005); Windward 2019 site survey
Parasitic jaeger	Stercorarius parasiticus	nd	yes	Thurston County (1994); USFWS (2005)
Pectoral sandpiper	Calidris melanotos	nd	yes	Thurston County (1994); USFWS (2005)
Pelagic cormorant	Phalacrocorax pelagicus	nd	yes	Thurston County (1994); USFWS (2005)
Peregrine falcon	Falco peregrinus	nd	yes	Thurston County (1994); USFWS (2005)
Pied-billed grebe	Podilymbus podiceps	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Pigeon guillemot	Cepphus columba	nd	yes	Thurston County (1994); USFWS (2005)
Pileated woodpecker	Dryocopus pileatus	nd	yes	Thurston County (1994); USFWS (2005)
Pine siskin	Spinus pinus (Carduelis pinus)	nd	yes	Thurston County (1994); USFWS (2005)
Prairie falcon	Falco mexicanus	nd	yes	USFWS (2005)
Purple finch	Haemorhous purpureus (Carpodacus purpureus)	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Purple martin	Progne subis	nd	yes	Thurston County (1994)
Red crossbill	Loxia curvirostra	nd	yes	USFWS (2005)
Red knot	Calidris canutus	nd	yes	Thurston County (1994); USFWS (2005)
Red-breasted merganser	Mergus serrator	nd	yes	Thurston County (1994); USFWS (2005)
Red-breasted nuthatch	Sitta canadensis	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2020 site survey
Red-breasted sapsucker	Sphyrapicus ruber	nd	yes	USFWS (2005); Windward 2020 site survey
Red-eyed vireo	Vireo olivaceus	nd	yes	Thurston County (1994); USFWS (2005)
Redhead	Aythya americana	nd	yes	Thurston County (1994);

Wind ward

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Red-necked grebe	Podiceps grisegena	nd	yes	Thurston County (1994); USFWS (2005)
Red-necked phalarope	Phalaropus lobatus	nd	yes	USFWS (2005)
Red-shafted flicker	Colaptes auratus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2020 site survey
Red-shouldered hawk	Buteo lineatus	nd	yes	USFWS (2005)
Red-tailed hawk	Buteo jamaicensis	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Red-throated loon	Gavia stellata	nd	yes	Thurston County (1994); USFWS (2005)
Red-winged blackbird	Agelaius phoeniceus	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); USFWS (2005); Windward 2020 site survey
Rhinoceros auklet	Cerorhinca monocerata	nd	yes	Thurston County (1994); USFWS (2005)
Ring-billed gull	Larus delawarensis	nd	yes	Thurston County (1994); USFWS (2005)
Ring-necked duck	Aythya collaris	nd	yes	Thurston County (1994); USFWS (2005)
Ring-necked pheasant	Phasianus colchicus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Rock dove	Columba livia	nd	yes	Thurston County (1994); USFWS (2005)
Rough-legged hawk	Buteo lagopus	nd	yes	Thurston County (1994); USFWS (2005)
Rough-winged swallow	Stelgidopteryx ruficollis	nd	yes	Thurston County (1994)
Ruby-crowned kinglet	Regulus calendula	nd	yes	Thurston County (1994); USFWS (2005)
Ruddy duck	Oxyura jamaicensis	nd	yes	Thurston County (1994); USFWS (2005)
Ruffed grouse	Bonasa umbellus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Rufous hummingbird	Selasphorus rufus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2019 site survey
Sage sparrow	Amphispiza belli	nd	yes	USFWS (2005)
Sanderling	Calidris alba	nd	yes	Thurston County (1994); USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Sandhill crane	Grus canadensis	nd	yes	Thurston County (1994); USFWS (2005)
Savannah sparrow	Passerculus sandwichensis	nd	yes	Thurston County (1994); USFWS (2005)
Saw-whet owl	Aegolius acadicus	nd	yes	Thurston County (1994)
Screech owl	Megascops asio	yes	yes	Dobos et al. (1977); Thurston County (1994);
Semipalmated plover	Charadrius semipalmatus	nd	yes	Thurston County (1994); USFWS (2005)
Sharp-shinned hawk	Accipiter striatus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Sharp-tailed sandpiper	Calidris acuminata	nd	yes	Thurston County (1994); USFWS (2005)
Short-billed dowitcher	Limnodromus griseus	nd	yes	USFWS (2005)
Short-eared owl	Asio flammeus	nd	yes	Thurston County (1994); USFWS (2005)
Short-tailed shearwater	Puffinus tenuirostris	nd	yes	USFWS (2005)
Slaty-backed gull	Larus schistisagus	nd	yes	USFWS (2005)
Snow bunting	Plectrophenax nivalis	nd	yes	Thurston County (1994); USFWS (2005)
Snow goose	Chen caerulescens	nd	yes	Thurston County (1994); USFWS (2005)
Snowy owl	Bubo scandiacus (Nyctea scandiaca)	nd	yes	Thurston County (1994); USFWS (2005)
Solitary sandpiper	Tringa solitaria	nd	yes	Thurston County (1994)
Song sparrow	Melospiza melodia	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2019 site survey; Windward 2020 site survey
Sora	Porzana carolina	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Spotted sandpiper	Actitis macularius	nd	yes	Thurston County (1994); USFWS (2005)
Spotted towhee	Pipilo maculatus	yes	yes	Dobos et al. (1977); USFWS (2005); Windward 2019 site survey
Starling	Sturnus vulgaris	nd	yes	Thurston County (1994); USFWS (2005); Windward 2020 site survey

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Steller's jay	Cyanocitta stelleri	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005); Windward 2020 site survey
Surf scoter	Melanitta perspicillata	nd	yes	Thurston County (1994); USFWS (2005)
Swainson's thrush	Catharus ustulatus	yes	yes	Thurston County (1994); USFWS (2005); Windward 2019 site survey
Thayer's gull	Larus thayeri	nd	yes	Thurston County (1994); USFWS (2005)
Townsend's solitaire	Myadestes townsendi	nd	yes	USFWS (2005)
Townsend's warbler	Setophaga townsendi (Dendroica townsendi)	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Tree sparrow	Spizelloides arborea	nd	yes	Thurston County (1994); USFWS (2005)
Tree swallow	Tachycineta bicolor	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Trumpeter swan	Cygnus buccinator	nd	yes	USFWS (2005)
Turkey vulture	Cathartes aura	nd	yes	Thurston County (1994); USFWS (2005)
Varied thrush	Ixoreus naevius	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Vaux's swift	Chaetura vauxi	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Vesper sparrow	Pooecetes gramineus	nd	yes	Thurston County (1994); USFWS (2005)
Violet-green swallow	Tachycineta thalassina	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Virginia rail	Rallus limicola	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Wandering tattler	Tringa incana	nd	yes	Thurston County (1994);
Warbling vireo	Vireo gilvus	nd	yes	Thurston County (1994); USFWS (2005)
Western bluebird	Sialia mexicana	nd	yes	USFWS (2005)
Western flycatcher	Empidonax difficilis	yes	yes	Dobos et al. (1977); Thurston County (1994)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Western grebe	Aechmophorus occidentalis	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Western gull	Larus occidentalis	nd	yes	USFWS (2005)
Western kingbird	Tyrannus verticalis	nd	yes	Thurston County (1994); USFWS (2005)
Western meadowlark	Sturnella neglecta	nd	yes	Thurston County (1994); USFWS (2005)
Western sandpiper	Calidris mauri	nd	yes	Thurston County (1994); USFWS (2005)
Western scrub-jay	Aphelocoma californica	nd	yes	Thurston County (1994); USFWS (2005)
Western tanager	Piranga ludoviciana	nd	yes	Thurston County (1994); USFWS (2005)
Western wood-pewee	Contopus sordidulus	yes	yes	Thurston County (1994); USFWS (2005); Windward 2019 site survey
Whimbrel	Numenius phaeopus	nd	yes	Thurston County (1994); USFWS (2005)
Whistling swan	Cygnus columbianus	nd	yes	Thurston County (1994); USFWS (2005)
White-crowned sparrow	Zonotrichia leucophrys	nd	yes	Thurston County (1994); USFWS (2005)
White-fronted goose	Anser albifrons	nd	yes	Thurston County (1994); USFWS (2005)
White-tailed kite	Elanus leucurus	nd	yes	Thurston County (1994); USFWS (2005)
White-throated sparrow	Zonotrichia albicollis	nd	yes	Thurston County (1994); USFWS (2005)
White-winged scoter	Melanitta fusca deglandi	nd	yes	Thurston County (1994); USFWS (2005)
Willet	Catoptrophorus semipalmatus	nd	yes	USFWS (2005)
Willow flycatcher	Empidonax traillii	nd	yes	Thurston County (1994); USFWS (2005)
Wilson's phalarope	Phalaropus tricolor	nd	yes	Thurston County (1994); USFWS (2005)
Wilson's warbler	Cardellina pusilla	yes	yes	Thurston County (1994); USFWS (2005); Windward 2019 site survey
Winter wren	Troglodytes hiemalis	yes	nd	Dobos et al. (1977)
Winter wren	Troglodytes troglodytes	nd	yes	Thurston County (1994); USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Wood duck	Aix sponsa	yes	yes	ESA Adolfson (2008); Thurston County (1994); Thurston County (2013); USFWS (2005)
Yellow warbler	Setophaga petechia (Dendroica petechia)	nd	yes	Thurston County (1994); USFWS (2005)
Yellow-bellied sapsucker	Sphyrapicus varius	nd	yes	Thurston County (1994)
Yellow-billed loon	Gavia adamsii	nd	yes	USFWS (2005)
Yellow-headed blackbird	Xanthocephalus xanthocephalus	nd	yes	Thurston County (1994); USFWS (2005)
Yellow-rumped warbler	Setophaga coronata (Dendroica coronata)	nd	yes	Thurston County (1994); USFWS (2005)

Bold indicates aquatic-dependent species.

^a Sources for Woodland Creek include Dobos et al. (1977), ESA Adolfson (2008), Haub et al. (2018), and Windward 2019 site survey; sources for McAllister Creek include Thurston County (1994), Thurston County (2013), USFWS (2005), and Windward 2020 site survey.

nd – no data

PHS – priority habitats and species

USFWS – US Fish and Wildlife Service

WDFW - Washington Department of Fish and Wildlife

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
Bullfrog	Lithobates catesbeianus	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Chorus frog	Pseudacris triseriata	yes	nd	Haub et al. (2018)
Common garter snake	Thamnophis sirtalis	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); Windward 2019 site survey
Long-toed salamander	Ambystoma macrodactylum	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Northern alligator lizard	Elgaria coerulea	yes	yes	Dobos et al. (1977); Thurston County (1994)
Northwest salamander	Ambystoma gracile	yes	yes	Haub et al. (2018); USFWS (2005)
Olympic salamander	Rhyacotriton olympicus	yes	nd	Dobos et al. (1977)
Pacific giant salamander	Dicamptodon spp.	yes	nd	Dobos et al. (1977)
Pacific tree frog	Pseudacris regilla	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Red-legged frog	Rana draytonii	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
Rough-skinned newt	Taricha granulosa	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); USFWS (2005)
Western fence lizard	Sceloporus occidentalis	yes	nd	Dobos et al. (1977)
Western garter snake	Thamnophis elegans	yes	nd	Dobos et al. (1977)
Western pond turtle	Actinemys marmorata	nd	yes	Thurston County (1994); USFWS (2005)
Western red-backed salamander	Plethodon vehiculum	nd	yes	USFWS (2005)
Western toad	Anaxyrus boreas	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994)

Bold indicates aquatic-dependent species.

^a Sources for Woodland Creek include Dobos et al. (1977), Haub et al. (2018), and Windward 2019 site survey; sources for McAllister Creek include Thurston County (1994) and USFWS (2005).

nd – no data USFWS – US Fish and Wildlife Service Windward – Windward Environmental LLC

Wind ward

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
American beaver	Castor canadensis	yes	yes	Haub et al. (2018); Thurston County (1994); USFWS (2005)
American red squirrel	Tamiasciurus hudsonicus	yes	nd	Dobos et al. (1977)
Big brown bat	Eptesicus fuscus	yes	nd	Dobos et al. (1977)
Black rat	Rattus rattus	nd	yes	USFWS (2005)
Black-tailed deer	Odocoileus hemionus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Bobcat	Lynx rufus	nd	yes	USFWS (2005)
Bushytailed woodrat	Neotoma cinerea	yes	yes	Dobos et al. (1977); USFWS (2005)
Coast mole	Scapanus orarius	nd	yes	USFWS (2005)
Columbian mouse	Peromyscus oreas	nd	yes	USFWS (2005)
Common raccoon	Procyon lotor	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); USFWS (2005); Windward 2019 site survey; Windward 2020 site survey
Coyote	Canis latrans	nd	yes	Thurston County (1994); USFWS (2005)
Creeping vole	Microtus oregoni	nd	yes	USFWS (2005)
Deer mouse	Peromyscus maniculatus	yes	yes	Haub et al. (2018); Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Douglas' squirrel	Tamiasciurus douglasii	nd	yes	USFWS (2005)
Dusky shrew	Sorex monticolus	yes	nd	Dobos et al. (1977)
Eastern cottontail rabbit	Sylvilagus floridanus	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Eastern gray squirrel	Sciurus carolinensis	nd	yes	USFWS (2005); Windward 2020 site survey
Golden-mantled ground squirrel	Callospermophilus lateralis	yes	nd	Dobos et al. (1977)
Gray squirrel	Sciurus carolinensis	yes	nd	Dobos et al. (1977)
Harbor seal	Phoca vitulina	nd	yes	Thurston County (1994); USFWS (2005)
Hoary bat	Lasiurus cinereus	yes	yes	Dobos et al. (1977), USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a
House mouse	Mus musculus	nd	yes	Thurston County (1994); USFWS (2005)
Little brown myotis	Myotis lucifugus	nd	yes	USFWS (2005)
Long-eared myotis	Myotis evotis	nd	yes	USFWS (2005)
Long-tailed vole	Microtus longicaudus	yes	yes	Haub et al. (2018); USFWS (2005)
Long-tailed weasel	Mustela frenata	yes	yes	Thurston County (1994); USFWS (2005); Windward 2020 site survey
Masked shrew	Sorex cinereus	nd	yes	Thurston County (1994); USFWS (2005)
Mink	Mustela vison	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); Thurston County (2013); USFWS (2005)
Mountain beaver	Aplodontia rufa	nd	yes	Thurston County (1994); USFWS (2005)
Mountain lion	Felis concolor	nd	yes	USFWS (2005)
Muskrat	Ondatra zibethicus	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); USFWS (2005); Windward 2019 site survey
Northern flying squirrel	Glaucomys sabrinus	nd	yes	Thurston County (1994); USFWS (2005)
Northern river otter	Lontra canadensis	yes	yes	Dobos et al. (1977); Haub et al. (2018); Thurston County (1994); USFWS (2005)
Northern water shrew	Sorex palustris	yes	nd	Dobos et al. (1977)
Norway rat	Rattus norvegicus	nd	yes	USFWS (2005)
Nutria	Myocastor coypus	yes	nd	Haub et al. (2018)
Opossum	Didelphis virginiana	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)
Oregon vole	Microtus oregoni	nd	yes	Thurston County (1994)
Pacific jumping mouse	Zapus trinotatus	nd	yes	Thurston County (1994); USFWS (2005)
Pacific shrew	Sorex pacificus	yes	nd	Dobos et al. (1977)
Pacific water shrew	Sorex bendirii	nd	yes	USFWS (2005)

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Source ^a	
Porcupine	Erethizon dorsatus	nd	yes	Thurston County (1994); USFWS (2005)	
Red fox	Vulpes vulpes	yes	yes	Dobos et al. (1977); USFWS (2005)	
Short-tailed weasel	Mustela erminea	nd	yes	USFWS (2005)	
Shrew-mole	Neurotrichus gibbsi	nd	yes	Thurston County (1994); USFWS (2005)	
Silver haired bat	Lasionycteris noctivagans	yes	yes	Dobos et al. (1977); USFWS (2005)	
Skunk (unidentified)	Mephitus spp.	yes	nd	Dobos et al. (1977)	
Snowshoe hare	Lepus americanus	yes	yes	Dobos et al. (1977); USFWS (2005)	
Spotted skunk	Spilogale gracilis	yes	nd	Dobos et al. (1977)	
Striped skunk	Mephitis mephitis	nd	yes	Thurston County (1994); USFWS (2005)	
Townsend's big-eared bat	Plecotus townsendii	nd	yes	USFWS (2005)	
Townsend's chipmunk	Tamias townsendii	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)	
Townsend's mole	Scapanus townsendii	yes	yes	Dobos et al. (1977); Thurston County (1994); USFWS (2005)	
Townsend's vole	Microtus townsendii	yes	yes	Haub et al. (2018); Dobos et al. (1977); Thurston County (1994); USFWS (2005)	
Trowbridge's shrew	Sorex trowbridgii	yes	yes	Dobos et al. (1977); USFWS (2005)	
Vagrant shrew	Sorex vagrans	nd	yes	Thurston County (1994); USFWS (2005)	
Weasel (unidentified)	Mustela spp.	yes	nd	Dobos et al. (1977)	
Western gray squirrel	Sciurus griseus	nd	yes	Thurston County (1994); USFWS (2005)	
Western red-backed vole	Clethrionomys californicus	nd	yes	USFWS (2005)	
Western spotted skunk	Spilogale gracilis/putorius	nd	yes	Thurston County (1994); USFWS (2005)	
White-footed mouse	Peromyscus leucopus	yes	nd	Dobos et al. (1977)	
White-tailed deer	Odocoileus virginianus	nd	yes	USFWS (2005)	
Yuma myotis (bat)	Myotis yumanensis	yes	yes	USFWS (2005); Windward 2019 site survey	

Wind ward

Bold indicates aquatic-dependent species.

Note: Only species documented in published sources are listed. Anecdotal evidence suggests that Douglas squirrel (*Tamiasciurus douglasii*) are also present in the Woodland Creek area.

^a Sources for Woodland Creek include Dobos et al. (1977), Haub et al. (2018), and Windward 2019 site survey; sources for McAllister Creek include Thurston County (1994), Thurston County (2013), USFWS (2005), and Windward 2020 site survey.

nd – no data

USFWS – US Fish and Wildlife Service

Windward – Windward Environmental LLC

Table B6. Aquatic-dependent sensitive species potentially present in the Woodland Creek and McAllister Creek areas

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Potential Site Use	USFWS Status	WDFW Status
Bald eagle	Haliaeetus leucocephalus	yes	yes	occurrence	recovery	not listed
Brown rockfish	Sebastes auriculatus	nd	yes	occurrence	none	priority species ^{b,c}
Bull trout	Salvelinus confluentus	nd	yes	occurrence	threatened	SOC candidate and priority species ^{a,b,c}
Chinook salmon	Oncorhynchus tshawytscha	yes	yes	occurrence/ migration	threatened	SOC candidate and priority species ^{a,b,c}
Chum salmon	Oncorhynchus keta	yes	yes	occurrence	threatened	SOC candidate and priority species ^{a,b,c}
Coho salmon	Oncorhynchus kisutch	yes	yes	breeding area	SOC	SOC candidate and priority species ^{a,b,c}
Common loon	Gavia immer	nd	yes	breeding area/migration	none	SOC and priority species ^{a,b}
Copper rockfish	Sebastes caurinus	nd	yes	occurrence	none	SOC candidate and priority species ^{a,b,c}
Cutthroat trout	Oncorhynchus clarki	yes	yes	occurrence	none	priority species ^c
English sole	Pleuronectes vetulus	nd	yes	breeding area	none	SOC candidate and priority species ^{a,b,c}
Fall Chinook salmon	Oncorhynchus tshawytscha	yes	nd	occurrence/ migration	threatened	SOC candidate and priority species ^{a,b,c}
Fall chum salmon	Oncorhynchus keta	yes	nd	occurrence	threatened	SOC candidate and priority species ^{a,b,c}
Great blue heron	Ardea herodias	yes	yes	breeding area	none	priority species ^b
Harbor seal	Phoca vitulina	nd	yes	haul-out areas	none	priority species ^b
Little brown myotis	Myotis lucifugus	nd ^d	yes	communal roost	under review	priority species ^b
Marbled murrelet	Brachyramphus marmoratum	nd	yes	occurrence	threatened	SOC and priority species ^{a,b}
Mountain quail	Oreortyx pictus	yes	nd	occurrence	none	priority species ^c

Wind ward

Table B6. Aquatic-dependent sensitive species potentially present in the Woodland Creek and McAllister Creek areas

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Potential Site Use	USFWS Status	WDFW Status
Native littleneck clam	Leukoma staminea	nd	yes	occurrence	none	priority species ^{b,c}
Olympic mudminnow	Novumbra hubbsi	yes	nd	occurrence	none	SOC and priority species ^a
Pacific cod	Gadus macrocephalus	nd	yes	breeding area	none	priority species ^{b,c}
Pacific hake	Merluccius productus	nd	yes	breeding area	none	priority species ^c
Pacific herring	Clupea harengus	nd	yes	breeding area	none	SOC candidate and priority species ^{a,b,c}
Pacific lamprey	Lampetra tridentata	nd	yes	occurrence	none	SOC candidate and priority species ^{a,b,c}
Pink salmon	Oncorhynchus gorbuscha	nd	yes	occurrence	none	priority species ^{b,c}
Quillback rockfish	Sebastes maliger	nd	yes	occurrence	none	priority species ^c
Rainbow trout/Winter steelhead	Oncorhynchus mykiss	yes	yes	occurrence/ migration	threatened	SOC candidate and priority species ^{a,c}
Red knot	Calidris canutus rufa	nd	yes	occurrence/ migration	threatened	not listed
Red-legged frog	Rana draytonii	yes	yes	occurrence	threatened	not listed
River lamprey	Lampetra ayresi	nd	yes	occurrence	none	SOC candidate and priority species ^{a,b,c}
Rock sole	Pleuronectes bilineata	nd	yes	breeding area	none	priority species ^c
Sandhill crane	Grus canadensis	nd	yes	breeding area	none	SOC and priority species ^a
Snow goose	Chen caerulescens	nd	yes	occurrence	none	priority species ^{b,c}
Sockeye salmon	Oncorhynchus nerka	yes	yes	occurrence	threatened	SOC candidate and priority species ^{a,b,c}
Surfsmelt	Hypomesus pretiosus	yes	nd	breeding area	none	priority species ^{b,c}
Trumpeter swan	Cygnus buccinator	nd	yes	occurrence	none	SOC candidate and priority species ^{a,b,c}

Wind ward

Table B6. Aquatic-dependent sensitive species potentially present in the Woodland Creek and McAllister Creek areas

Common Name	Scientific Name	Woodland Creek	McAllister Creek	Potential Site Use	USFWS Status	WDFW Status
Walleye pollock	Theregra chalcogrammus	nd	yes	breeding area	none	SOC candidate and priority species ^{a,b,c}
Western grebe	Aechmophorus occidentalis	yes	yes	breeding area/migration	none	SOC candidate and priority species ^{a,b}
Western pond turtle	Actinemys marmorata	nd	yes	occurrence	under review	SOC and priority species ^a
Western toad	Anaxyrus boreas	yes	yes	occurrence	none	SOC candidate and priority species ^a
White sturgeon	Acipenser transmontanus	nd	yes	occurrence	endangered	SOC candidate and priority species ^{a,b,c}
Winter steelhead	Oncorhynchus mykiss	yes	nd	occurrence/ migration	threatened	SOC candidate and priority species ^{a,c}
Wood duck	Aix sponsa	yes	yes	breeding area	none	priority species ^c
Yuma myotis (bat)	Myotis yumanensis	yes	yes	communal roost	none	priority species ^b

Source: WDFW (2019) and USFWS (2019)

- ^a Priority species designation based on Criterion 1 (state-listed and candidate species).
- ^b Priority species designation based on Criterion 2 (vulnerable aggregations).
- ^c Priority species designation based on Criterion 3 (species of recreational, commercial, and/or tribal importance).
- ^d Little brown myotis is not documented in the literature as being present in Woodland Creek basin, nor was it observed during the Windward site visit; however, information from the WDFW PHS List suggests that it may be present in the Woodland Creek area.

PHS – priority habitat and species

SOC – species of concern

WDFW - Washington Department of Fish and Wildlife

USFWS – US Fish and Wildlife Service

References

- Dobos A, Farber D, Hoelzer H, Jones L, Joy J, Lahey W, Larsen J, Ridling J, Smoot C, Trautman J. 1977. Woodland Creek. A baseline study. The final report to the Washington State Department of Game. The Evergreen State College, Olympia, WA.
- ESA Adolfson. 2008. Lacey, Olympia, and Tumwater shoreline analysis & characterization report. Environmental Sciences Associates.
- Haub A, Christensen E, Lund J, Stewart J, Graham J, Barham J, Roush J, Keehan L, Goodman M, Thompson S, Barclift S, Clark S. 2018. Storm and surface water plan. City of Olympia, Water Resources, Olympia, WA.
- Thurston County. 1994. McAllister/Eaton Creek comprehensive drainage basin plan. Thurston County Department of Water and Waste Management Storm and Surface Water Program, Olympia, WA.
- Thurston County. 2013. Thurston County shoreline master program update. Inventory and characterization report. Final draft. Thurston County Planning Department, Olympia, WA.
- USFWS. 2005. Nisqually National Wildlife Refuge comprehensive conservation plan. US Fish and Wildlife Service.
- USFWS. 2019. Environmental conservation online system, conserving the nature of America. Listed species believed to or known to occur in Washington [online]. US Fish and Wildlife Service, Washington, DC. Available from: <u>https://ecos.fws.gov/ecp0/reports/species-listed-by-state-report?state=WA&status=listed</u>.
- WDFW. 2019. PHS on the web [online]. Washington Department of Fish & Wildlife. [Cited July 2, 2019.] Available from: <u>http://apps.wdfw.wa.gov/phsontheweb/</u>.
- Woo I, Davis M, De La Cruz S. 2017. Nisqually River Delta summary: early phase restoration performance and prey contributions to juvenile Chinook salmon within a habitat mosaic. Summary report to: Estuarine and Salmon Restoration Program. Project # 13-1583P. US Geological Survey.

